BackgroundDysbiosis of gut microbiota are commonly reported in autism spectrum disorder (ASD) and may contribute to behavioral impairment. Vitamin A (VA) plays a role in regulation of gut microbiota. This study was performed to investigate the role of VA in the changes of gut microbiota and changes of autism functions in children with ASD.ResultsSixty four, aged 1 to 8 years old children with ASD completed a 6-month follow-up study with VA intervention. High-performance liquid chromatography was used to assess plasma retinol levels. The Autism Behaviour Checklist (ABC), Childhood Autism Rating Scale (CARS) and Social Responsiveness Scale (SRS) were used to assess autism symptoms. CD38 and acid-related orphan receptor alpha (RORA) mRNA levels were used to assess autism-related biochemical indicators’ changes. Evaluations of plasma retinol, ABC, CARS, SRS, CD38 and RORA mRNA levels were performed before and after 6 months of intervention in the 64 children. Illumina MiSeq for 16S rRNA genes was used to compare the differences in gut microbiota before and after 6 months of treatment in the subset 20 of the 64 children. After 6 months of intervention, plasma retinol, CD38 and RORA mRNA levels significantly increased (all P < 0.05); the scores of ABC, CARS and SRS scales showed no significant differences (all P > 0.05) in the 64 children. Meanwhile, the proportion of Bacteroidetes/Bacteroidales significantly increased and the proportion of Bifidobacterium significantly decreased in the subgroup of 20 (all false discovery rate (FDR) q < 0.05).Conclusions Bacteroidetes/Bacteroidales were the key taxa related to VA. Moreover, VA played a role in the changes in autism biomarkers. It remains unclear whether the VA concentration is associated with autism symptoms.Trial registrationThe study protocol was peer reviewed and approved by the institutional review board of Children’s Hospital, Chongqing Medical University in 2013 and retrospectively registered in Chinese Clinical Trial Registry (ChiCTR) on November 6, 2014 (TRN: ChiCTR-ROC-14005442).Electronic supplementary materialThe online version of this article (10.1186/s12866-017-1096-1) contains supplementary material, which is available to authorized users.
Background/Aims: Vitamin A (VA) protects the intestinal epithelial barrier by improving cell migration and proliferation. Our previous studies demonstrated that VA deficiency (VAD) during pregnancy suppresses the systemic and mucosal immune responses in the intestines of offspring and that VA supplementation (VAS) during early life can increase immune cell counts. However, little is known about the mechanisms by which VA regulates intestinal epithelial barrier function. Methods: Caco-2 cells were treated with all-trans retinoic acid (ATRA) for 24 hours to determine the optimum ATRA concentration to which the cells in question respond. Caco-2 cells were infected with recombinant adenoviruses carrying retinoic acid receptor beta (Ad-RARβ) and small interfering RARβ(siRARβ) to assess the effects of RARβ signalling on the expression of specific proteins. A siTLR4 lentivirus was used to knockdown Toll-like receptor 4 (TLR4) in Caco-2 cells to determine its role in the protective effects of VA on the intestinal epithelial barrier, and experiments involving TLR4-knock-out mice were performed to verify the effect of TLR4. VA normal (VAN), VAD and VAS rat models were established to confirm that changes in RARβ, TLR4 and ZO-2 expression levels that occurred following decreases or increases in retinol concentrations in vivo, and the permeability of the Caco-2 cell monolayer, as well as that of the epithelial barrier of the rat intestine was detected by measuring transepithelial resistance (TER) or performing enzyme-linked immunosorbent assay (ELISA). Retinoic acid receptor (RAR), toll like receptor (TLR) and tight junction (TJ) mRNA and protein expression levels in Caco-2 cells and the colon monolayers in the rat and mouse models were measured by PCR and western blotting, respectively. Co-immunoprecipitation (co-IP) and immunofluorescence staining were performed to assess the interactions among RARβ, TLR4 and zonula occluden-2 (ZO-2) in Caco-2 cells, and chromatin immunoprecipitation (ChIP) assay was performed to assess the binding between RARβ and the TLR4 promoter sequence in Caco-2 cells. Results: In the present study, ATRA treatment not only increased the TER of the Caco-2 monolayer but also up-regulated the expression levels of RARβ, TLR4 and ZO-2 in Caco-2 cells. The expression levels of these three proteins were significantly decreased in the colonic epithelial monolayers of VAD rats compared with those of VAN rats and were significantly increased following VAS in the corresponding group compared with the control group. Furthermore, the above changes in TLR4 and ZO-2 expression levels were augmented or attenuated by Ad-RARβ or siRARβ infection, respectively, in Caco-2 cells. Interestingly, siTLR4 down-regulated ZO-2 expression but did not affect RARβ expression in Caco-2 cells, and in VAD mice the lack of TLR4 did not affect ZO-2 expression. We noted direct interactions between RARβ and TLR4, TLR4 and ZO-2 in Caco-2 cells, and ChIP assay showed that RARβ could bind to the TLR4 promoter but not the ZO-2 promoter in Ca...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.