The roles of RNA modification during organ metastasis of cancer cells are not known. Here we established breast cancer lung metastasis cells by three rounds of selection of lung metastatic subpopulations in vivo and designated them as BCLMF3 cells. In these cells, mRNA N6-methyladenosine (m6A) and methyltransferase METTL3 were increased, while the demethylase FTO was decreased. Epi-transcriptome and transcriptome analyses together with functional studies identified keratin 7 (KRT7) as a key effector for m6A-induced breast cancer lung metastasis. Specifically, increased METTL3 methylated KRT7-AS at A877 to increase the stability of a KRT7-AS/KRT7 mRNA duplex via IGF2BP1/HuR complexes. Furthermore, YTHDF1/eEF-1 was involved in FTO-regulated translational elongation of KRT7 mRNA, with methylated A950 in KRT7 exon 6 as the key site for methylation. In vivo and clinical studies confirmed the essential roles of KRT7, KRT7-AS, and METTL3 for lung metastasis and clinical progression of breast cancer. Collectively, m6A promotes breast cancer lung metastasis by increasing the stability of a KRT7-AS/KRT7 mRNA duplex and translation of KRT7.
Significance:
This study suggests that N6-methyladenosine is a key driver and potential therapeutic target in breast cancer metastasis.
Background: The present study aimed to verify whether long noncoding RNA (lncRNA) MALAT1 is involved in brain tissue damage induced by ischemia-reperfusion injury, and to explore the mechanism by which MALAT1 regulates aquaporin 4 (AQP4). Methods: In this study, we established glucose deprivation (OGD)/reoxygenation (RX) astrocyte cell model and middle cerebral artery occlusion (MCAO)/reperfusion mouse model in vitro and in vivo. Then cell counting kit-8 assay, flow cytometry analysis, Triphenyltetrazolium chloride (TTC) staining, and western blotting were used to determine cell viability, cell apoptosis, cerebral infarction volume, and the abundance of AQP4, respectively.
Results:We found that the level of MALAT1 was significantly upregulated in both the MCAO/reperfusion model and OGD/RX model. Knockdown of MALAT1 increased cell viability and reduced cell apoptosis in MA-C cells, while an AQP4 siRNA combined with a siRNA targeting MALAT1 could not enhance this effect. Further experiments showed that MALAT1 positively regulated AQP4 expression via miR-145. The MALAT1 siRNA did not alleviate the exacerbation of damage after miR-145 inhibitor action. However, an miR-145 inhibitor reversed the protection effects of MALAT1, indicating that MALAT1 silencing protects against cerebral ischemia-reperfusion injury through miR-145. TTC staining showed that the infracted area of whole brain was significantly attenuated in treated with sh-MALAT1 group in vivo.
Conclusion:Taken together, our study confirmed that MALAT1 promotes cerebral ischemia-reperfusion injury by affecting AQP4 expression through competitively binding miR-145, indicating that MALAT1 might be a new therapeutic target for treatment cerebral ischemic stroke.
HTN, rather than fever, is the leading reason for patients with Takayasu arteritis to see a doctor in China. HTN, major complications, and a progressive disease course are statistically significant predictors of survival. Because of cardiovascular events associated with the disease, early diagnosis and treatment are urgent to improve prognosis.
The study showed that PTA improved subjective symptoms and objective variables of the patients with symptomatic pulmonary stenosis in TA, with an acceptable mortality. PTA may be a promising therapeutic strategy for symptomatic pulmonary stenosis in TA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.