Electronic music can help people alleviate the pressure in life and work. It is a way to express people’s emotional needs. With the increase of the types and quantity of electronic music, the traditional electronic music classification and emotional analysis cannot meet people’s more and more detailed emotional needs. Therefore, this study proposes the emotion analysis of electronic music based on the PSO-BP neural network and data analysis, optimizes the BP neural network through the PSO algorithm, and extracts and analyzes the emotional characteristics of electronic music combined with data analysis. The experimental results show that compared with BP neural network, PSO-BP neural network has a faster convergence speed and better optimal individual fitness value and can provide more stable operating conditions for later training and testing. The electronic music emotion analysis model based on PSO-BP neural network can reduce the error rate of electronic music lyrics text emotion classification and identify and analyze electronic music emotion with high accuracy, which is closer to the actual results and meets the expected requirements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.