Emerging technologies and applications including Internet of Things (IoT), social networking, and crowd-sourcing generate large amounts of data at the network edge. Machine learning models are often built from the collected data, to enable the detection, classification, and prediction of future events. Due to bandwidth, storage, and privacy concerns, it is often impractical to send all the data to a centralized location. In this paper, we consider the problem of learning model parameters from data distributed across multiple edge nodes, without sending raw data to a centralized place. Our focus is on a generic class of machine learning models that are trained using gradientdescent based approaches. We analyze the convergence bound of distributed gradient descent from a theoretical point of view, based on which we propose a control algorithm that determines the best trade-off between local update and global parameter aggregation to minimize the loss function under a given resource budget. The performance of the proposed algorithm is evaluated via extensive experiments with real datasets, both on a networked prototype system and in a larger-scale simulated environment. The experimentation results show that our proposed approach performs near to the optimum with various machine learning models and different data distributions.
Emerging technologies and applications including Internet of Things (IoT), social networking, and crowd-sourcing generate large amounts of data at the network edge. Machine learning models are often built from the collected data, to enable the detection, classification, and prediction of future events. Due to bandwidth, storage, and privacy concerns, it is often impractical to send all the data to a centralized location. In this paper, we consider the problem of learning model parameters from data distributed across multiple edge nodes, without sending raw data to a centralized place. Our focus is on a generic class of machine learning models that are trained using gradientdescent based approaches. We analyze the convergence rate of distributed gradient descent from a theoretical point of view, based on which we propose a control algorithm that determines the best trade-off between local update and global parameter aggregation to minimize the loss function under a given resource budget. The performance of the proposed algorithm is evaluated via extensive experiments with real datasets, both on a networked prototype system and in a larger-scale simulated environment. The experimentation results show that our proposed approach performs near to the optimum with various machine learning models and different data distributions.
We study the dynamic service migration problem in mobile edge-clouds that host cloud-based services at the network edge. This offers the benefits of reduction in network overhead and latency but requires service migrations as user locations change over time. It is challenging to make these decisions in an optimal manner because of the uncertainty in node mobility as well as possible non-linearity of the migration and transmission costs. In this paper, we formulate a sequential decision making problem for service migration using the framework of Markov Decision Process (MDP). Our formulation captures general cost models and provides a mathematical framework to design optimal service migration policies. In order to overcome the complexity associated with computing the optimal policy, we approximate the underlying state space by the distance between the user and service locations. We show that the resulting MDP is exact for uniform one-dimensional mobility while it provides a close approximation for uniform two-dimensional mobility with a constant additive error term. We also propose a new algorithm and a numerical technique for computing the optimal solution which is significantly faster in computation than traditional methods based on value or policy iteration. We illustrate the effectiveness of our approach by simulation using real-world mobility traces of taxis in San Francisco.
Mobile edge computing is an emerging technology to offer resource-intensive yet delay-sensitive applications from the edge of mobile networks, where a major challenge is to allocate limited edge resources to competing demands. While prior works often make a simplifying assumption that resources assigned to different users are non-sharable, this assumption does not hold for storage resources, where users interested in services (e.g., data analytics) based on the same set of data/code can share storage resource. Meanwhile, serving each user request also consumes non-sharable resources (e.g., CPU cycles, bandwidth). We study the optimal provisioning of edge services with non-trivial demands of both sharable (storage) and non-sharable (communication, computation) resources via joint service placement and request scheduling. In the homogeneous case, we show that while the problem is polynomial-time solvable without storage constraints, it is NP-hard even if each edge cloud has unlimited communication or computation resources. We further show that the hardness is caused by the service placement subproblem, while the request scheduling subproblem is polynomial-time solvable via maximum-flow algorithms. In the general case, both subproblems are NP-hard. We develop a constant-factor approximation algorithm for the homogeneous case and efficient heuristics for the general case. Our trace-driven simulations show that the proposed algorithms, especially the approximation algorithm, can achieve near-optimal performance, serving 2-3 times more requests than a baseline solution that optimizes service placement and request scheduling separately. Index Terms-mobile edge computing; service placement; request scheduling; complexity analysis; approximation algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.