Stretchable skin-like pressure sensing with minimized and distinguishable strain-induced interference is essential for the development of collision-aware surgical robotics to improve the safety and efficiency of minimally invasive surgery in a confined space. Inspired by the multidimensional wrinkles of Shar-Pei dog's skin for tactile sensing, we developed a stretchable pressure sensor consisting of reduced graphene oxide (rGO) electrodes with biomimetic topographies to improve the robot−tissue collision detections. A facile fabrication route for stretchable rGO electrodes was first demonstrated by harnessing the surface instability during the sequential deformation processes. The wrinkle−crumple rGO electrodes exhibited high stretchability (∼100%) and strain-insensitive resistance profiles [a gauge factor (GF) < 0.05], which were next utilized to fabricate piezoresistive pressure sensors. The rGO pressure sensors were highly stretchable and exhibited high sensitivity under uniaxial strains (1.37, 1.30, and 0.98 kPa −1 at 0, 30, and 50% stretching states, respectively) along with distinguishable and reduced stretching responsiveness (a small GF ∼0.2 under 40% strains). The stretchable pressure sensors were next integrated with two surgical robots for the transoral robotic surgery procedure. During the cadaveric testing, the rGO sensors can detect the robot−tissue contacts under joint stretches in real time to enhance the surgeon's awareness for collision avoidance. The stretchable rGO pressure sensor that is highly sensitive under large strains provides great potential in the fields of wearable sensing and collisionaware humanoid robots to improve the human−machine interactions.
Microsupercapacitors (MSCs) with neutral multivalent electrolytes are safer, cheaper, and exhibit higher theoretical energy densities compared with the MSCs with acidic and alkaline electrolytes. Multivalent charge carriers (e.g., Mg 2+ , Zn 2+) in the MSCs with Ti 3 C 2 T x MXene electrodes have not been demonstrated, which could theoretically achieve higher specific capacitances and energy densities. However, because of the larger size of multivalent charge carriers, the MXene electrodes require further modifications to facilitate reversible electrochemical reactions. Herein, through spontaneous intercalation of various metal ions into MXene multilayers, twelve metal ion intercalated MXene electrodes (M n+-MXene) are fabricated and demonstrate improved electrochemical performance. Different nanopillar effects are observed between divalent Be 2+ and trivalent Al 3+ intercalants, which are systematically investigated by electrochemical impedance spectroscopy and molecular dynamics simulation. Among all M n+-MXene electrodes, the Be 2+-MXene electrode largely facilitates the charge-transfer process with minimal disturbance of electrolyte diffusion rates, showing improved specific capacitances and high rate performance in univalent (Li 2 SO 4 , Na 2 SO 4 , K 2 SO 4) and multivalent electrolytes (BeSO 4 , MgSO 4 , ZnSO 4). Finally, flexible Be 2+-MXene MSCs with neural ZnSO 4 gel electrolytes are fabricated, demonstrating superior areal capacitances (77.2 mF cm −2) and high energy density (3.86 µWh cm −2 at 0.12 mW cm −2) together with high user safety.
Electrically conductive metal−organic frameworks (cMOFs) have become a topic of intense interest in recent years because of their great potential in electrochemical energy storage, electrocatalysis, and sensing applications. Most of the cMOFs reported hitherto are 2D structures, and 3D cMOFs remain rare. Herein we report FeTHQ, a 3D cMOF synthesized from tetrahydroxy-1,4-quinone (THQ) and iron(II) sulfate salt. FeTHQ exhibited a conductivity of 3.3 ± 0.55 mS cm −1 at 300 K, which is high for 3D cMOFs. The conductivity of FeTHQ is valence-dependent. A higher conductivity was measured with the as-prepared FeTHQ than with the air-oxidized and sodium naphthalenide-reduced samples.
Mismatched deformation in a bilayer composite with rigid coating on a soft substrate results in complex and uniform topographic patterns, yet it remains challenging to heterogeneously pattern the upper coatings with various localized structures. Herein, a heterogeneous, 3D microstructure composed of Ti3C2T x titanium carbide (MXene) and single-walled carbon nanotubes (SWNTs) was fabricated using a one-step deformation of a thermally responsive substrate with designed open holes. The mechanically deformed SWNT–MXene (s-MXene) structure was next transferred onto an elastomeric substrate, and the resulting s-MXene/elastomer bilayer device exhibited three localized surface patterns, including isotropic crumples, periodic wrinkles, and large papillae-like microstructures. By adjusting the number and pattern, the s-MXene papillae arrays exhibited superhydrophobicity (>170°), strong and tunable adhesive force (52.3–110.6 μN), and ultra-large liquid capacity (up to 35 μL) for programmable microdroplet manipulation. The electrically conductive nature of s-MXene further enabled proper thermal management on microdroplets via Joule heating for miniaturized antibacterial tests. The s-MXene papillae were further fabricated in a piezoresistive pressure sensor with high sensitivity (11.47 kPa–1). The output current changes of s-MXene sensors were highly sensitive to voice vibrations and responded identically with prerecorded profiles, promising their application in accurate voice acquisition and recognition.
Bacterial resistance toward antibiotics has been a worldwide threat; one way to fight against the resistance is to develop a multimechanism antibacterial agent to achieve synergistic performance. Graphene oxide (GO) is an emerging antibacterial agent combining multiple mechanisms (physical insertion and chemical disruption), and its rich functional groups enable the complexation/conjugation of nanomaterials to further improve antibacterial performance. Herein, a synergistic antimicrobial agent is established through the assembly of paramagnetic holmium ions and gold nanoclusters (AuNCs) onto GO nanosheets. The assembled nanosheets can be vertically aligned under weak and practical magnetic fields (<0.5 T ), providing high‐density sharp edges with preferential orientation to effectively pierce the bacterial membrane. Also, the conjugated AuNCs are efficiently delivered into bacteria to induce high oxidative stress, which strongly disturbs bacterial metabolism, leading to the death of both Gram‐positive and Gram‐negative bacteria. The antibacterial agent uses both physical (via oriented GO) and chemical (via GO and AuNCs) mechanisms to achieve synergistic antimicrobial performance with low IC50 values of 9.8 µg mL−1 on the basis of GO and 0.39 × 10−6 m on the basis of AuNCs. This multicomponent agent with dual antimicrobial mechanisms is expected to be a promising multifunctional‐antimicrobial agent with high biosafety.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.