Crystallization is a fundamental and ubiquitous process much studied over the centuries. But although the crystallization of atoms is fairly well understood, it remains challenging to predict reliably the outcome of molecular crystallization processes that are complicated by various molecular interactions and solvent involvement. This difficulty also applies to nanoparticles: high-quality three-dimensional crystals are mostly produced using drying and sedimentation techniques that are often impossible to rationalize and control to give a desired crystal symmetry, lattice spacing and habit (crystal shape). In principle, DNA-mediated assembly of nanoparticles offers an ideal opportunity for studying nanoparticle crystallization: a well-defined set of rules have been developed to target desired lattice symmetries and lattice constants, and the occurrence of features such as grain boundaries and twinning in DNA superlattices and traditional crystals comprised of molecular or atomic building blocks suggests that similar principles govern their crystallization. But the presence of charged biomolecules, interparticle spacings of tens of nanometres, and the realization so far of only polycrystalline DNA-interconnected nanoparticle superlattices, all suggest that DNA-guided crystallization may differ from traditional crystal growth. Here we show that very slow cooling, over several days, of solutions of complementary-DNA-modified nanoparticles through the melting temperature of the system gives the thermodynamic product with a specific and uniform crystal habit. We find that our nanoparticle assemblies have the Wulff equilibrium crystal structure that is predicted from theoretical considerations and molecular dynamics simulations, thus establishing that DNA hybridization can direct nanoparticle assembly along a pathway that mimics atomic crystallization.
We use molecular dynamics simulations to study the crystallization of spherical nucleic-acid (SNA) gold nanoparticle conjugates, guided by sequence-specific DNA hybridization events. Binary mixtures of SNA gold nanoparticle conjugates (inorganic core diameter in the 8−15 nm range) are shown to assemble into BCC, CsCl, AlB 2 , and Cr 3 Si crystalline structures, depending upon particle stoichiometry, number of immobilized strands of DNA per particle, DNA sequence length, and hydrodynamic size ratio of the conjugates involved in crystallization. These data have been used to construct phase diagrams that are in excellent agreement with experimental data from wet-laboratory studies.
The selectivity of DNA recognition inspires an elegant protocol for designing versatile nanoparticle (NP) assemblies. We use molecular dynamics simulations to analyze dynamic aspects of the assembly process and identify ingredients that are key to a successful assembly of NP superlattices through DNA hybridization. A scale-accurate coarse-grained model faithfully captures the relevant contributions to the kinetics of the DNA hybridization process and is able to recover all experimentally reported to date binary superlattices (BCC, CsCl, AlB2, Cr3Si, and Cs6C60). We study the assembly mechanism in systems with up to 10(6) degrees of freedom and find that the crystallization process is accompanied with a slight decrease of enthalpy. Furthermore, we find that the optimal range of the DNA linker interaction strengths for a successful assembly is 12-16kBT, and the optimal mean lifetime of a DNA hybridization event is 10(-4)-10(-3) of the total time it takes to form a crystal. We also obtain the optimal percentage of hybridized DNA pairs for different binary systems. On the basis of these results, we propose suitable linker sequences for future nanomaterials design.
Herein, we report an example of entropy-driven crystallization behavior in DNA-nanoparticle superlattice assembly, marking a divergence from the well-established enthalpic driving force of maximizing nearest-neighbor hybridization connections. Such behavior is manifested in the observation of a non-close-packed, body-centered cubic (bcc) superlattice when using a system with self-complementary DNA linkers that would be predicted to form a close-packed, face-centered cubic (fcc) structure based solely on enthalpic considerations and previous design rules for DNA-linked particle assembly. Notably, this unexpected phase behavior is only observed when employing long DNA linkers with unpaired "flexor" bases positioned along the length of the DNA linker that increase the number of microstates available to the DNA ligands. A range of design conditions are tested showing sudden onsets of this behavior, and these experiments are coupled with coarse-grained molecular dynamics simulations to show that this entropy-driven crystallization behavior is due to the accessibility of additional microstates afforded by using long and flexible linkers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.