ZnS:Er quantum dots were prepared in aqueous medium from readily available precursors. The construction, morphology and luminescence properties of the ZnS:Er quantum dots were evaluated by X-ray diffraction (XRD), transmission electron microscopy (TEM), and photoluminescence spectra. The average particle size was calculated using the Scherrer formula to be 4 nm, which is also observed from high resolution transmission electron microscopy (HRTEM) image. Different laser wavelengths at 976 +/- 2 nm and 1480 nm were utilized as the excitation source. ZnS:Er quantum dots had a fluorescence spectrum in 1550 nm region through the 4I13/2 --> 4I15/2 transition. Furthermore, intensity increased with increasing excitation intensity and dopant concentration. The reason for the photoluminescence spectra broadening is discussed. It is because the energy levels of Er3+ are split by a coulombic interaction between electrons, including spin correction and spin-orbit coupling, and eventually by the Stark effect due to ZnS QDs crystal field and local coordination.
High-quality, all-inorganic CsPbBr3/Cs4PbBr6 composite perovskite nanocrystals (NCs) were obtained with all-solution-processing at room temperature, and a photodetector (PD) with high detectivity was realized based on CsPbBr3/Cs4PbBr6 NCs. The detectivity (D*) of the proposed PD is 4.24 × 1012 Jones under 532 nm illumination, which is among the highest levels for PDs based on all-inorganic perovskite NCs. In addition, a high linear dynamic range (LDR) of 115 dB under 1 V bias was also realized. Furthermore, the underlying mechanism for the enhanced performance of the proposed PD was discussed. Our work might promote the preparation of high-performance PDs based on dual-phase all-inorganic perovskite nanocrystals.
High-quality water-soluble ZnS:Pb2+ nanocrystals were synthesized via a simple chemical codepositing method. The as-synthesized ZnS:Pb2+ nanocrystals show high monodispersity and crystallinity with a narrow size distribution (3.2 +/- 0.4 nm). ZnS:Pb2+/ZnS core/shell structures were also obtained by coating a ZnS shell displaying significantly enhanced photoluminescence (PL) intensity and photostability. For the ZnS:Pb2+/ZnS samples the position of emission spectrum shows a red-shift of approximately 10 nm, which produces a fairly pure white emission with Commission Internationale de l'Eclairage (CIE) coordinates of (0.31, 0.33). These phenomena are explained by a model of multiple Pb2+ luminescent centers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.