Five designs of imbricate scale armour features for stab-resistant application were printed via fused deposition modelling process. Stab test on these designs against the HOSDB KR1-E1 stab-resistant body armour standard with impact energy of 24 Joules was conducted. The stab test was conducted on a number of samples measured thicknesses ranging from 4.0 to 10.0 mm by using Instron CEAST 9340 Drop Impact Tower to determine a minimum thickness that resulted in a knife penetration through the underside of sample which does not exceed the maximum penetration permissibility of 7.0 mm. Materials used for the samples were ABS-M30 and PC-ABS. Finally, one of the designs which offered the highest knife penetration resistance was selected. The results show that PC-ABS samples provide less shattering and lower overall knife penetration depth in comparison with ABS-M30. PC-ABS stab test demonstrated a minimum thickness of 8.0 mm, which was the most adequate to be used in the development of FDM manufactured body armour design features. Lastly, the design feature of D5 has shown to exhibit the highest resistance to the knife penetration due to the penetration depth of 3.02 mm, which was the lowest compared to other design features.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.