Ionospheric nighttime enhancements are manifested in an increase of the electron density at nighttime. This paper studies the latitudinal variation of the specific local time of postmidnight enhancement peaks using ionosondes distributed at low latitudes. To obtain the parameters of the ionosphere, we manually extracted ionograms recorded by ionosondes. Cases show that there are significant latitudinal variations in the observed local time of the postmidnight enhancement peaks. Results show that the lower the geomagnetic latitude, the earlier the enhancement peak occurred in the geomagnetic northern hemisphere. Additionally, the enhancement peaks occurred earlier in the geomagnetic southern hemisphere than that in the geomagnetic northern hemisphere for these present cases. We suggest that the combined effect of the geomagnetic inclination and transequatorial meridional wind might be the main driving force for latitudinal variation of the local time of the occurrence.
Spread F on ionograms has been considered to be a phenomenon mainly occurred at nighttime. This study presented a case study of daytime spread F observed by the ionosonde installed at Puer (PUR; 22.7°N, 101.05°E; dip latitude 12.9°N), where daytime spread F that lasted for more than 2 h (about 08:30 LT~10:45 LT) was observed on 14 November 2015. To investigate the possible mechanism, ionograms recorded at PUR and Chiang Mai (18.76°N, 98.93°E; dip latitude 9.04°N) were used in this study. We found that traveling ionospheric disturbances were observed before the occurrence of daytime spread F. Meanwhile, the movement of the peak height of the ionosphere was downward. We suggested that downward vertical neutral winds excited by traveling atmospheric disturbances/atmospheric gravity waves might play a significant role in forming daytime spread F over PUR during geomagnetic storms.
The COVID-19 pandemic caused drastic changes in human activities and nighttime light (NTL) at various scales, providing a unique opportunity for exploring the pattern of the extreme responses of human community. This study used daily NTL data to examine the spatial variations and temporal dynamics of human activities under the influence of COVID-19, taking Chinese mainland as the study area. The results suggest that the change in the intensity of NTL is not correlated to the number of confirmed cases, but reflects the changes in human activities and the intensity of epidemic prevention and control measures within a region. During the outbreak period, the major provincial capitals and urban agglomerations were affected by COVID-19 more than smaller cities. During the recovery, different regions showed different recovery processes. The cities in West and Northeast China recovered steadily while the recovery in coastal cities showed relatively greater fluctuations due to an increase in imported cases. Wuhan, the most seriously affected city in China, did not recover until the end of March. Nevertheless, as of 31 March, the overall NTL across China had recovered to an 89.5% level of the same period in the previous year. The high consistency between the big data of travel intensity and NTL further proved the validity of the results of this study. These findings imply that daily NTL data are effective for rapidly monitoring the dynamic changes in human activities, and can help evaluate the effects of control measures on human activities during major public health events.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.