The canonical Wnt signaling pathway is critical for the development of midbrain dopaminergic (DA) neurons, and recent studies have suggested that disruption of this signaling cascade may underlie the pathogenesis of Parkinson’s disease (PD). However, the exact role of the canonical Wnt signaling pathway, including low-density lipoprotein receptor-related protein 5 and 6 (LRP5/6) and β-catenin components, in a mouse model of PD remains unclear. In the present study, the tyrosine hydroxylase (TH)-Cre transgenic mouse line was used to generate mice with the specific knockout of LRP5, LRP6 or β-catenin in DA neurons. Following inactivation of LRP5, LRP6 or β-catenin, TH-immunohistochemical staining was performed. The results indicated that β-catenin is required for the development or maintenance of these neurons; however, LRP5 and LRP6 were found to be dispensable. In 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice, the depletion of LRP5, LRP6 or β-catenin was found to be protective for the midbrain DA neurons to a certain extent. These in vivo results provide a novel perspective for the function of the canonical Wnt signaling pathway in a mouse model of PD.
The blood-brain barrier (BBB) is critical to the health of the central nervous system (CNS). The possibility that 5-hydroxytryptamine (5-HT) participates in the alteration of the BBB has been previously demonstrated. Tryptophan hydroxylase 2 (TPH2) is a unique genetic enzyme isoform that catalyzes the rate-limiting step in the biosynthesis of 5-HT in the CNS; however, its role in the permeability changes of the BBB remains unclear. In the present study, TPH2-knockout mice were utilized in the assessment of BBB disruption, as measured by the Evans Blue (EB) extravasation or fluorescein isothiocyanate-albumin leakage assay in the brain. EB was not found to be retained in the brain in the TPH2-knockout mice or the wild-type controls. The results of the study demonstrate that TPH2 knockout has no effect on BBB permeability, indicating that TPH2 and the 5-HT system in the CNS are not sufficient to influence the BBB leakage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.