In recent years, photovoltaic devices based on inorganic–organic hybrid perovskite materials have become one of the most promising research subjects in the field of energy conversion. CH3NH3PbI3 stands out among a wide variety of perovskite structural materials with the advantages of a suitable band structure, small exciton binding energy, long carrier diffusion distance, and so on. Unfortunately, the CH3NH3PbI3 perovskite undergoes severe degradation under humid conditions, which limits the service life of the device. To address this issue, researchers have recently discovered that the humidity stability of perovskite solar cells (PSCs) can be improved through doping or interfacial engineering. Here, we have reviewed the state of the research progress in improving the humidity stability of PSCs, including (a) improving the structural stability of perovskite material itself by doping or element substitutions; (b) interface engineering between the hole transport layer and the perovskite active layer; (c) interface modification between the electron transport layer and the perovskite layer; and (d) encapsulation. The strategy of improving the humidity stability of CH3NH3PbI3 by optimizing the device structure and developing new materials is summarized. We also make constructive suggestions for improving the stability of PSCs in humid environments.
Colloidal quantum dot (QD) light-emitting diodes (QLEDs) hold the promise of next-generation displays and illumination owing to their excellent color saturation, high efficiency, and solution processability. For achieving high-performance lightemitting diodes (LEDs), engineering the fine compositions and structures of QDs is of paramount importance and attracts tremendous research interest. The recently developed continuously graded QDs (cg-QDs) with gradually altered nanocompositions and electronic band structures present the most advanced example in this area. In this Perspective, we summarize the current progress in LEDs based on cg-QDs, mainly concentrating on their synthesis and advantages in addressing the great challenges in QLEDs, like efficiency roll-off at high current densities, short operation lifetimes at high brightness, and low brightness near the voltage around the bandgap. In addition, we propose accessible approaches exploiting the cutting-edge mechanisms and techniques to further optimize and improve the performance of QLEDs.
The emergence of resistant Aspergillus spp. is increasing worldwide. Long-term susceptibility surveillance for clinically isolated Aspergillus spp. strains is warranted for understanding the dynamic change in susceptibility and monitoring the emergence of resistance. Additionally, neither clinical breakpoints (CBPs) nor epidemiological cutoff values (ECVs) for Aspergillus spp. in China have been established. In this study, we performed a 20-year antifungal susceptibility surveillance for 706 isolates of Aspergillus spp. in a clinical laboratory at Peking University First Hospital from 1999 to 2019; and in vitro antifungal susceptibility to triazoles, caspofungin, and amphotericin B was determined by the Clinical and Laboratory Standards Institute (CLSI) broth microdilution method. It was observed that Aspergillus fumigatus was the most common species, followed by Aspergillus flavus and Aspergillus terreus. Forty isolates (5.7%), including A. fumigatus, A. flavus, A. terreus, Aspergillus niger, and Aspergillus nidulans, were classified as non-wild type (non-WT). Importantly, multidrug resistance was observed among A. flavus, A. terreus, and A. niger isolates. Cyp51A mutations were characterized for 19 non-WT A. fumigatus isolates, and TR34/L98H/S297T/F495I was the most prevalent mutation during the 20-year surveillance period. The overall resistance trend of A. fumigatus increased over 20 years in China. Furthermore, based on ECV establishment principles, proposed ECVs for A. fumigatus and A. flavus were established using gathered minimum inhibitory concentration (MIC)/minimum effective concentration (MEC) data. Consequently, all the proposed ECVs were identical to the CLSI ECVs, with the exception of itraconazole against A. flavus, resulting in a decrease in the non-WT rate from 6.0 to 0.6%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.