Modular building is becoming a common sight due to government policies promoting greater automation and productivity. When moving towards modularity, indoor comfort within volumetric modules, such as levels of humidity and temperature, natural ventilation, and air pollutant transport, have a major effect on human health and well-being. Computational fluid dynamics simulations (CFD) are used to evaluate the efficiency of natural ventilation. However, designers usually find it difficult to visualize the CFD simulation results, which can deepen users’ understanding of the wind environment and help optimize the design of modular buildings. To overcome this challenge, this paper presents an integrated approach based on building information modeling (BIM) and virtual reality (VR), with the aim of analyzing the aerodynamic design and wind comfort for modular buildings. The framework consists of four salient components. First, a new method, combining OpenStreetMap and Dynamo, is proposed to achieve rapid urban modeling of modular buildings. The second step involves the use of CFD to simulate the outdoor wind environment surrounding modular buildings. The third step emphasizes the integration of CFD-computed data with VR applications to create an immersive virtual environment for designers to analyze the wind environment of design alternates. Finally, the visual experience of non-professional users is used to improve the ventilation of the building and support more informed decision marking at the early stage of building design. The proposed framework is illustrated via a case study that focuses on a group of modular housings in the urban area of Singapore. The results indicate that visualization of CFD simulations in VR provides designers with more details regarding the actual space, and it is expected to help optimize the architectural design.
Timely assessment of the structural safety status of water diversion projects and taking necessary preventive measures are the primary conditions to ensure the safe operation of large-scale diversion structures. This paper proposes an integrated visualization framework based on the Building Information Model (BIM) to support the safety management of water diversion projects. The framework integrates data collection, data analysis, warning issuance, and emergency disposal into an integrated platform, which improves the automation level of safety management and the efficiency of emergency response. On this basis, a prototype system is developed and implemented in a water diversion project in Henan Province, China. The prototype of the system can automatically evaluate the structural safety status of water diversion structures, issue corresponding warnings to managers, and provide visual prompts to support decision-making. The system prototype and its demonstration verify the applicability and effectiveness of the framework.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.