A method of parameter matching for extended-range electric vehicle (E-REV) was discussed to meet the requirements given, then using a model and genetic algorithm to optimize the transmission ratio of E-REV. The parameters of the battery and range extender (RE) are designed by driving range and power requirement. The simulation results shows that the parameter matching is reasonable, and the power performance and driving range could meet the design requirements.
The Yaoba Oasis is an irrigated cropland entirely dependent on groundwater; previous investigations (1980–2015) revealed an over-abstraction of groundwater and deteriorating groundwater quality. For further exploring the hydrodynamic behaviors and geochemical processes of groundwater during the irrigation season, groundwater samples were collected and analyzed using different techniques including classical statistics, correlation analysis, Piper diagrams, and Gibbs diagrams. The results indicated that Na+, K+, SO42− and Cl− were the main ions in groundwater, which were significantly correlated with TDS. The water–rock interaction is manifested by the precipitation of calcite and dolomite and the dissolution of rock salt and gypsum as an increase in TDS related to evaporation. In addition, the increasing complexity of hydrochemical type is caused by the rapid variation of hydrodynamic regime, irrigation and evaporation, which are subjected to the constraints of salty water intrusion from the desert salty lake and infiltration of irrigation return flow. Existing wells should limit overexploitation to halt the decline in groundwater levels and cut down irrigation water to reduce the risk of groundwater contamination and restore ecological balance in desert oasis.
Malan loess is an eolian sediment in arid and semi-arid areas. It is of great significance to study the pore structure of Malan loess for its evolution, strength, and mechanical properties. In order to quantitatively characterize the absolute permeability tensor of Malan loess and to simulate the seepage process of Malan loess, this study calculated the specific yield of intact Malan loess with a homemade seepage experimental device and recorded the water flow process on the surface of Malan loess during the seepage process. Modern computed tomography was used to scan the intact Malan loess samples from Jiuzhoutai, Lanzhou (western part of the Loess Plateau, China); the specific yield of the intact loess was used as the parameter value for the threshold segmentation of the scanned image for the 3D reconstruction of the connected pore space, the solver program in AVIZO software was used to solve the absolute permeability tensor of Malan loess using the volume averaging method combined with the CT scan to reconstruct the 3D pore space, and the simulation of the seepage process was carried out. The simulation results showed that Malan loess is a highly anisotropic loess; the absolute permeability in the vertical direction is 9.02 times and 3.86 times higher than the permeability in the horizontal direction. The pore spaces are well connected in the vertical direction (forming a near-vertical arrangement of pipes) and weakly connected in the horizontal direction. In the seepage simulation, it was found that the water flows first along the vertically oriented channels and then fills the horizontally oriented pores; the absolute permeability coefficient was calculated to be 0.3482 μm2. The indoor seepage experiment was consistent with the simulation experiment, which verifies the reliability of the calculated model.
Malan loess is a wind-formed sediment in arid and semi-arid regions and is an important constituent of the Earth’s critical zone. Therefore, the study of the relationship between microstructure and heat transfer in Malan loess is of great significance for the in-depth understanding of the heat transfer mechanism and the accurate prediction of the heat transfer properties of intact loess. In order to quantitatively characterize the heat transfer processes in the two-phase medium of solid particles and gas pores in the intact loess, this study used modern computed tomography to CT scan the Malan loess in Huan County, Gansu Province, the western part of the Loess Plateau, China and used the specific yield of the intact Malan loess as the parameter basis for extracting the threshold segmentation of the large pores in the scanned images for the three-dimensional reconstruction of the connected large pores. An experimental space for heat conduction of intact Malan loess was constructed, and the surface temperature of Malan loess was measured on the surface of the space with a thermal imager. The simulation of the heat conduction process was carried out using the solution program in AVIZO (2019) software using the volume averaging method combined with CT scanning to reconstruct the 3D pores. The experiments of heat conduction in the intact Malan loess showed that for a given external temperature pressure, the temperature decreases along the heat flow direction as a whole. The temperature of the pores in the normal plane along the heat flow direction is higher than the temperature of the solid skeleton. Abnormal temperature points were formed at the junction of the surface and internal pores of Maran loess, and the temperature of the jointed macropores was about 1 °C higher at the surface of the sample than that of the surrounding solid skeleton. Simulation of heat conduction in Malan loess showed that the heat transfer process in Malan loess was preferentially conducted along the large pores and then the heat was transferred to the surrounding Malan loess particle skeleton. The simulation results of heat conduction in Malan loess were in high agreement with the experimental results of heat conduction in Malan loess, which verifies the reliability of the calculated model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.