Melatonin is a universal regulator modulating plant development and responses to abiotic stresses. The alteration and potential roles of melatonin in mediating aluminum (Al) tolerance were investigated in two wheat genotypes differing in Al resistance. Using the high‐resolution mass spectrometry, we observed that melatonin contents in Xi Aimai‐1 were 1.7‐fold higher than that in Yangmai‐5. Application of melatonin conferred Al resistance in both genotypes. Melatonin treatment scavenged reactive oxygen species (ROS) accumulation and alleviated Al‐induced oxidative damage to lipids and proteins by stimulating antioxidant enzymes and augmenting antioxidants. Additionally, melatonin treatment decreased root tip‐Al contents by 19.0% and 15.5% in Xi Aimai‐1 and Yangmai‐5, respectively. Malate efflux, however, was not altered by melatonin under Al stress. The amount of cell wall polysaccharide and pectin methylesterase activity was significantly increased by Al treatment; but suppressed by melatonin. Melatonin synthesis inhibitor, p‐CPA, significantly increased the amount of the Al binding in cell walls of the tolerant genotype, whereas exogenous melatonin decreased cell wall Al content in the sensitive genotype. These results suggest that melatonin alleviated Al toxicity through augmenting antioxidants and inducing antioxidant enzymes to control ROS and enhancing exclusion of Al from root apex by altering cell wall polysaccharides in wheat.
Previous studies have showed that wheat gluten hydrolysate (WGH) has the anti-oxidative property. In the present study, we examined the possible safety property of WGH and the beneficial effects of WGH to extend lifespan and induce stress resistance using nematode Caenorhabditis elegans as the in vivo assay system. We found that WGH at concentrations of 0.1–1 mg/mL did not cause lethality, influence development, alter locomotion behavior and brood size, and induce significant intestinal autofluorescence and reactive oxygen species (ROS) production in young adults. Treatment with 0.1–1 mg/mL of WGH significantly extended lifespans of nematodes under the normal conditions. Moreover, WGH treatment significantly inhibited the induction of intestinal autofluorescence and suppressed the decrease in locomotion behavior during the aging process of nematodes. Furthermore, pre-treatment with 1 mg/mL of WGH significantly suppressed the adverse effects caused by heat-stress or oxidative stress on nematodes as indicated by the alterations of both lifespan and intestinal ROS production. Therefore, WGH treatment is relatively safe and has beneficial effects on nematodes under both the normal conditions and the stress conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.