Blue phase liquid crystals (BPLCs) are chiral mesophases with 3D order, which makes them a promising template for doping nanoparticles (NPs), yielding tunable nanomaterials attractive for microlasers and numerous microsensor applications. However, doping NPs to BPLCs causes BP lattice extension, which translates to elongation of operating wavelengths of light reflection. Here, it is demonstrated that small (2.4 nm diameter) achiral gold (Au) NPs decorated with designed LC-like ligands can enhance the chiral twist of BPLCs (i.e., reduce cell size of the single BP unit up to ∼14% and ∼7% for BPI and BPII, respectively), translating to a blue-shift of Bragg reflection. Doping NPs also significantly increases the thermal stability of BPs from 5.5 °C (for undoped BPLC) up to 22.8 °C (for doped BPLC). In line with our expectations, both effects are saturated, and their magnitude depends on the concentration of investigated nanodopants as well the BP phase type. Our research highlights the critical role of functionalization of Au NPs on the phase sequence of BPLCs. We show that inappropriate selection of surface ligands can destabilize BPs. Our BPLC and Au NPs are photochemically stable and exhibit great miscibility, preventing NP aggregation in the BPLC matrix over the long term. We believe that our findings will improve the fabrication of advanced nanomaterials into 3D periodic soft photonic structures.
Liquid crystal random fiber lasers (LC-RFLs) exhibit low spatial coherence, extraordinary tunability, and high flexibility and are therefore promising for use in imaging and related applications. They nevertheless suffer from ineffective emission along the fiber axis. This work develops an end-emitting LC-RFL that is based on a pump-induced gain–loss structure, which effectively modulates the optical feedback, thereby providing directional random lasing along the fiber. The laser emission comprises ∼10 000 transverse spatial modes that are mutually incoherent, resulting in a negligible speckle contrast of ∼0.7% (far below the speckle-perception threshold of human eyes). The developed LC-RFL is used to perform speckle-free full-field imaging in a setting with strong optical crosstalk in a multimode fiber. Our findings support the potential widespread use of LC-RFL as a spatially incoherent, flexible laser source.
This work demonstrates a variable optical attenuator (VOA) using dynamic scattering mode (DSM) in ion-doped liquid crystals with negative dielectric anisotropy. The mechanism of attenuation comes from optical scattering, which is generated by the electrically induced instability of undulation of LC textures. Electric fields are applied to switch the initial transparent state of the designed VOA to scattering states, varying the transmittance. The electric field also changes the size of the scattering domain from the LC texture and causes the designed device to exhibit an ultra-broadband selective operation in a visible to mid-IR spectral range. Furthermore, the VOA can selectively block one visible or mid-IR wavelength of light while letting other light pass. Such a VOA has many superior optical switching properties, such as high on/off contrast, insensitivity to polarization, and spectral selectivity; therefore, it has the potential to be used in practical optical systems.
Photonic crystals enable modulation of light waves in space, time, and frequency domains; in particular, chiral photonic crystals are uniquely suitable for polarization rotation and switching of complex vector fields. Current development of chiral photonic crystals, nevertheless, are still confronted with limitations of one form or the other such as large optical losses, limited or absence of tunability, narrow operation bandwidth, and/or insufficient optical thickness for practical implementation. In this work, we show that cholesteric liquid crystals as 1D tunable chiral photonic crystals are promising alternatives to not only address all these issues and deficiencies but also enable new photonic applications in wider temporal and spectral realms. Our work entails a detailed study of the dynamical evolution of cholesteric helical self-assembly and defect formation in the bulk of thick cholesteric liquid crystals under various applied electric field conditions and a thorough exploration of how applying fields of vastly different frequencies can eliminate and/or prevent the formation of unremovable defects and to control the alignment of cholesteric helices in the entire bulk. We have developed a dual-frequency field assembly technique that enables robust room-temperature fabrication of stable well-aligned cholesteric liquid crystals to unprecedented thickness (containing thousands of grating periods) demanded by many photonic applications. The resulting chiral photonic crystals exhibit useful much-sought-after capabilities impossible with other existing or developing chiral photonic crystals—compactness (single, flat, millimeter-thick optical element), high transmission, dynamic tunability, large polarization rotation, and various switching/modulation possibilities for ultrafast and continuous-wave lasers in the visible, near- and mid-infrared regimes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.