Polymeric nanoparticles (NPs) containing liquid crystalline (LC) mesogens with tunable anisotropic morphologies have applications in various fields, but their preparation typically suffers from tedious and lowthroughput approaches. Here we present an efficient route to the preparation of anisotropic morphologies of azobenzene-containing block copolymers (BCPs) at high solids content via a polymerization-induced hierarchical self-assembly in ethanol. Various anisotropic NPs, including cuboids, short belts, lamellae, and ellipsoidal vesicles, have been obtained in a remarkably broad range of BCP compositions. The NPs exhibit a smectic phase with ordered stripes when observed under TEM. This internal LC ordering plays a significant role on the formation of these intriguing anisotropic morphologies. Morphological transitions from anisotropic to isotropic spheres can be obtained upon UV illumination due to the photoresponsive properties of the azobenzene mesogens. This work significantly expands the scope of accessible morphologies in PISA and suggests that the under explored LC BCPs may have an impactful role in the PISA field.
Sluggish kinetics of the methanol oxidation reaction (MOR) at the anode of direct methanol fuel cells (DMFCs) is primarily due to adsorbed CO poisoning of precious metal catalysts. CeO2 is known to provide oxygen containing species to adjacent precious metal sites for facilitating CO removal during the MOR. In this work, highly dispersed Pd nanoparticles surrounded by CeO2 dots were deposited on a core–shell structured and nitrogen-doped mesoporous carbon sphere (NMCS) support, which exhibited encouraging electrocatalytic activity, CO tolerance, and stability for the MOR in alkaline media. The ratios of Pd to CeO2 were found crucial for overall catalytic performance enhancement. When compared to a commercial PtRu/C catalyst, an optimized Pd(20%)-CeO2(20%)/NMCS catalyst presented a comparable CO stripping onset potential, ∼6 times higher peak current density, and enhanced cyclic stability. The unique mesoporous carbon with nitrogen doping also benefits for uniform dispersion of Pd nanoparticles and CeO2 dots. In good agreement with experimental spectroscopy analysis, density functional theory calculations suggest that the strong electronic interactions between Pd and surrounding CeO2, as well as nitrogen dopants in supports, dramatically reduce the adsorption energy of CO at the Pd surface, therefore enhancing CO tolerance of the Pd-CeO2/NMCS catalyst and further improving MOR activity. Using a polymer fiber membrane-based alkaline DMFC, the Pd(20%)-CeO2 (20%)/NMCS anode catalyst further demonstrated encouraging performance when a NiCo2O4 catalyst was used for the oxygen cathode.
Block copolymers containing azobenzene liquid crystalline (LC) mesogen are used to prepare snowman-like Janus nanoparticles (NPs) by emulsion solvent evaporation. The azobenzene-containing poly(methacrylate) (PMAAz) head of the Janus NPs is in the smectic LC phase with ordered stripes, which becomes amorphous and enlarged due to trans/cis transformation under UV irradiation. The expanded PMAAz can consequently engulf the other head. The self-engulfed NPs can recover to their original state in both shape and LC state via visible-light irradiation. This strategy is promising for programmable load and release of different payloads by remote trigger using light.
Pervaperation (PV), as a novel technology, has shown great promise in fresh water production from salty water. However, the low water flux of the present membranes hinders their practical applications. Here, a new type of PV composite membrane, consisting of a selective skin layer fabricated from poly(vinyl alcohol) (PVA) cross-linked by sulfosuccinic acid and a porous support layer using a commercial polyacrylonitrile (PAN) ultrafiltration membrane, was developed for applications in desalination. The separation performance of S-PVA/PAN composite PV membranes with different S-PVA layer thicknesses was tested in detail. The best result showed a water flux of 27.9 kg m h with a salt rejection of 99.8%, which was obtained at a vacuum of 100 Pa and temperature of 70°C when separating a 35,000 ppm NaCl solution. The S-PVA/PAN composite membranes could also be used for the desalination of high-concentration (100,000 ppm) NaCl solutions with a water flux of 11.2 kg m h with a salt rejection of 99.8%. Moreover, a stable desalination performance was obtained for a 120 h operation time. This study shows the possibility of using PV in desalination applications for seawater, brackish water and reverse osmosis concentrate treatment.
Here, a self-powered optical switch (OS) composed of a surface-etched single-electrode triboelectric nanogenerator (TENG) and a polymer-dispersed liquid crystal (PDLC) film is reported. The working principle of the developed OS is that the liquid crystal alignment can be driven by triboelectrificationgenerated voltage, inducing the PDLC film to rapidly switch its initial translucent state to an instantaneous transparent state. An output voltage of 360 V is generated upon the PDLC film when a nitrile rubber film contacts with the TENG at an area of 25 cm 2 and a velocity of 0.4 m s −1 . As such, a wide dimming range with the relative transmitted light intensity from 0.05 to 0.85 can be achieved for the OS. Enabled by the unique mechano-electro-optical reaction, the effects of a series of structural parameters on the performance of the OS are methodically studied. Particularly, through integrating the OS with a visible-light-operated signal-processing circuit, a complete wireless sensing system with a fully power-free sensing node is developed. The paradigms of hand touching and foot stepping triggered wireless alarms are demonstrated, explicitly showing great potential for the system in many possible interactive human-machine interface applications, such as surveillance, security systems, remote operation, and automatic control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.