A fully automated spray-coated technology with ultrathin-film purification is exploited for the commercial large-scale solution-based processing of colloidal inorganic perovskite CsPbI 3 quantum dot (QD) films toward solar cells. This process is in the air outside the glove box. To further improve the performance of QD solar cells, the short-chain ligand of phenyltrimethylammonium bromide (PTABr) with a benzene group is introduced to partially substitute for the original long-chain ligands of the colloidal QD surface (namely PTABr-CsPbI 3 ). This process not only enhances the carrier charge mobility within the QD film due to shortening length between adjacent QDs, but also passivates the halide vacancy defects of QD by Br − from PTABr. The colloidal QD solar cells show a power conversion efficiency (PCE) of 11.2% with an open voltage of 1.11 V, a short current density of 14.4 mA cm −2 , and a fill factor of 0.70. Due to the hydrophobic surface chemistry of the PTABr-CsPbI 3 film, the solar cell can maintain 80% of the initial PCE in ambient conditions for one month without any encapsulation. Such a low-cost and efficient spraycoating technology also offers an avenue to the film fabrication of colloidal nanocrystals for electronic devices.with a large bandgap of 2.82 eV. [24,25] Many efforts have tried to partly replace I − with Br − to increase the stability of the black phase. [17,26,27] Unfortunately, the introduction of the bromine component enlarges the bandgap of the perovskite, correspondingly to harm the light-harvesting performance. The cubic structure of CsPbI 3 also can be stabilized by the colloidal quantum dot (QD) method, because the enlarging surface energy inhibits the phase transition. [28][29][30] In addition, on the basis of the multiple exciton generation effects, the narrow bandgap colloidal QDs will exceed the single-junction Shockley-Queisser solar efficiency limit to achieve higher theoretical efficiency. [31,32] Several efforts have built the devices with quite inspiring efficiency using the CsPbI 3 QD film as the active layer. [14,30,[33][34][35][36][37][38] However, the CsPbI 3 QDs are usually deposited to form the thin film by the spin-coating method. This method is an undesirable way to realize the scaled manufacture of the QD thin film because of the small deposition area. [39] To economize the cost of materials and realize scalable film deposition, the spray coating is emerging as a typical process for the fabrication of the thin films and has been used in the commercial paint coat technology. [32,39] However, the spray-coating process is hard to obtain high quality compact thin-film of colloidal QD due to long chain surface organic ligands of QD that weakens the adhesive force between QD and substrate. The surface ligands are obstructive to the formation of QD films and performance of the devices by hindering the charge transport. But the surface ligands are necessary to maintain monodisperse QDs and suppress their agglomeration. How to balance the surface ligands and the adhesive f...
Slippery liquid-infused porous surfaces, emerging bio-inspired surfaces which have attracted widespread research interest over the past few years, have great potential in both corrosion protection and biofouling prevention.
Human hepatocellular carcinoma (HCC) is one of the most common tumors worldwide, in which the genetic mechanisms of oncogenesis are still unclear. To investigate whether the genomic DNA copy number alterations may contribute to primary HCC, the cDNA microarray-based comparative genomic hybridization (CGH) analysis was here performed in 41 primary HCC infected by hepatitis B virus and 12 HCC cell lines. The resulting data showed that, on average, 7.25% of genomewide DNA copy numbers was significantly altered in those samples (4.61 ± 2.49% gained and 2.64 ± 1.78% lost). Gains involving 1q, 6p, 8q and 9p were frequently observed in these cases; and whilst, losses involving Ip, 16q and 19p occurred in most patients. To address the correlation between the alteration of genomic DNA copy numbers and transcriptional expression, the same cDNA microarray was further applied in 20 HCC specimens and all available cell lines to figure out the gene expression profiles of those samples. Interestingly, the genomic DNA copy number alterations of most genes appeared not to be in generally parallel with the corresponding transcriptional expression. However, the transcriptional deregulation of a few genes, such as osteopontin (SPP1), transgelin 2 (TAGLN2) and PEG10, could be ascribed partially to their genomic aberrations, although the many alternative mechanisms could be involved in the deregulation of these genes. In general, this work would provide new insights into the genetic mechanisms in hepatocarcinogenesis associated with hepatitis B virus through the comprehensive survey on correlation between genomic DNA copy number alterations and transcriptional expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.