We for the first time demonstrate multi-functional magnetic particles based rare cell isolation combined with the downstream laser desorption/ionization mass spectrometry (LDI-MS) to measure the metabolism of enriched circulating tumor cells (CTCs). The characterization of CTCs metabolism plays a significant role in understanding the tumor microenvironment, through exploring the diverse cellular process. However, characterizing cell metabolism is still challenging due to the low detection sensitivity, high sample complexity, and tedious preparation procedures, particularly for rare cells analysis in clinical study. Here we conjugate ferric oxide magnetic particles with anti-EpCAM on the surface for specific, efficient enrichment of CTCs from PBS and whole blood with cells concentration of 6–100 cells per mL. Moreover, these hydrophilic particles as matrix enable sensitive and selective LDI-MS detection of small metabolites (MW<500 Da) in complex bio-mixtures and can be further coupled with isotopic quantification to monitor selected molecules metabolism of ~50 CTCs. Our unique approach couples the immunomagnetic separation of CTCs and LDI-MS based metabolic analysis, which represents a key step forward for downstream metabolites analysis of rare cells to investigate the biological features of CTCs and their cellular responses in both pathological and physiological phenomena.
Liquid biopsy, as a minimally invasive method of gleaning insight into the dynamics of diseases through a patient fluid sample, has been growing in popularity for cancer diagnosis, prognosis, and monitoring. While many technologies have been developed and validated in research laboratories, there has also been a push to expand these technologies into other clinical settings and as point of-care devices. In this review we discuss and evaluate microchip-based technologies for circulating tumor cell (CTC), exosome, and circulating tumor nucleic acid (ctNA) capture, detection, and analysis. Such integrated systems streamline otherwise multiple-step, manual operations to get a sample-to-answer quantitation. In addition, analysis of disease biomarkers is suited to point of care settings because of ease of use, low consumption of sample and reagents, and high throughput. We also cover the basics of biomarkers and their detection in biological fluid samples suitable for liquid biopsy on-chip. We focus on emerging technologies that process a small patient sample with high spatial-temporal resolution and derive clinically meaningful results through on-chip biomarker sensing and downstream molecular analysis in a simple workflow. This critical review is meant as a resource for those interested in developing technologies for capture, detection, and analysis platforms for liquid biopsy in a variety of settings.
Detection of circulating tumor cells (CTCs) in patient's blood is an important approach to cancer diagnosis and prognosis, but has been challenging due to the rarity of cells. Here, a magnetic‐enhanced capturing of CTCs onto a plasmonic gold (pGOLD) chip, through a microfluidic immunomagnetic method, is demonstrated. Owing to the squashed/flattened morphology of cancer cells by magnetic forces and the resulting close proximity of near‐infrared (NIR) labels on cells to the pGOLD surface, an ultrahigh NIR fluorescence enhancement of ≈50–120‐fold is observed, drastically enhancing the ability of CTC detection, imaging, and analysis. Fluorescence enhanced, multiplexed protein biomarkers detection of CTCs is conducted for cancer cell spiked samples as well as CTCs in cancer patient's blood. Low CTC concentrations are detected down to ≈1 cell mL−1 with capture efficiency up to ≈90%. Mechanical manipulation of cells by magnetic and other forces on plasmonic substrates represents a promising approach to ultrasensitive bio‐analytical applications.
We report the capability to simulate in a quantum-mechanical atomistic fashion record-large nanowire devices, featuring several hundred to millions of atoms and a diameter up to 18.2 nm. We have employed a tight-binding mode-space NEGF technique demonstrating by far the fastest (up to 10 000 × faster) but accurate (error < 1%) atomistic simulations to date. Such technique and capability opens new avenues to explore and understand the physics of nanoscale and mesoscopic devices dominated by quantum effects. In particular, our method addresses in an unprecedented way the technologically-relevant case of band-to-band tunneling (BTBT) in III-V nanowire broken-gap heterojunction tunnel-FETs (HTFETs). We demonstrate an accurate match of simulated BTBT currents to experimental measurements in a 12 nm diameter InAs NW and in an InAs/GaSb Esaki tunneling diode. We apply our TB MS simulations and report the first in-depth atomistic study of the scaling potential of III-V GAA nanowire HTFETs including the effect of electron-phonon scattering and discrete dopant impurity band tails, quantifying the benefits of this technology for low-power low-voltage CMOS applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.