The biological relevance of cytokines is known for more than 20 years. Evidence suggests that adipogenesis is one of the biological events involved in the regulation of cytokines, and pro-inflammatory cytokines (e.g., TNFα and IL-1β) inhibit adipogenesis through various pathways. This inhibitory effect can constrain the hyperplastic expandability of adipose tissues. Meanwhile, chronic low-grade inflammation is commonly observed in obese populations. In some individuals, the impaired ability of adipose tissues to recruit new adipocytes to adipose depots during overnutrition results in adipocyte hypertrophy, ectopic lipid accumulation, and insulin resistance. Intervention studies showed that pro-inflammatory cytokine antagonists improve metabolism in patients with metabolic syndrome. This review focuses on the cytokines currently known to regulate adipogenesis under physiological and pathophysiological circumstances. Recent studies on how inhibited adipogenesis leads to metabolic disorders were summarized. Although the interplay of cytokines and lipid metabolism is yet incompletely understood, cytokines represent a class of potential therapeutic targets in the treatment of metabolic disorders.
Pneumoconiosis refers to a spectrum of pulmonary diseases caused by inhalation of mineral dust, usually as the result of certain occupations. The main pathological features include chronic pulmonary inflammation and progressive pulmonary fibrosis, which can eventually lead to death caused by respiratory and/or heart failure. Pneumoconiosis is widespread globally, seriously threatening global public health. Its high incidence and mortality lie in improper occupational protection, and in the lack of early diagnostic methods and effective treatments. This article reviews the epidemiology, safeguard procedures, diagnosis, and treatment of pneumoconiosis, and summarizes recent research advances and future research prospects.
Background: Immunoglobulin E (IgE) belongs to a class of immunoglobulins involved in immune response to specific allergens. However, the roles of IgE and IgE receptor (FcεR1) in pathological cardiac remodeling and heart failure (HF) are unknown. Methods: Serum IgE levels and cardiac IgE receptor (FcεR1) expression were assessed in diseased hearts from human and mouse. The role of FcεR1 signaling in pathological cardiac remodeling was explored in vivo by FcεR1 genetic depletion, anti-IgE antibodies, and bone-marrow (BM) transplantation. The roles of IgE-FcεR1 pathway were further evaluated in vitro in primary cultured rat cardiomyocytes (CMs) and cardiac fibroblasts (CFs). RNA-seq and bioinformatic analyses were used to identify biochemical changes and signaling pathways that are regulated by IgE/FcεR1. Results: Serum IgE levels were significantly elevated in patients with HF as well as in two mouse cardiac disease models induced by chronic pressure overload via transverse aortic contraction (TAC) and chronic angiotensin II (Ang II) infusion. Interestingly, FcεR1 expression levels were also significantly up-regulated in failing hearts from human and mouse. Blockade of the IgE-FcεR1 pathway by FcεR1 knockout alleviated TAC- or Ang II-induced pathological cardiac remodeling and/or dysfunction. Anti-IgE antibodies (including the clinical drug, omalizumab) also significantly alleviated Ang II-induced cardiac remodeling. BM transplantation experiments indicated that IgE-induced cardiac remodeling was mediated through non-BM-derived cells. FcεR1 was found to be expressed in both CMs and CFs. In cultured rat CMs, IgE-induced CM hypertrophy and hypertrophic marker expression were abolished by depleting FcεR1. In cultured rat CFs, IgE-induced CF activation and matrix protein production were also blocked by FcεR1 deficiency. RNA-seq and signaling pathway analyses revealed that transforming growth factor-β (TGF-β) may be a critical mediator and blocking TGF-β indeed alleviated IgE-induced cardiomyocyte hypertrophy and cardiac fibroblast activation in vitro . Conclusions: Our findings suggest that IgE induction plays a causative role in pathological cardiac remodeling, at least partially via the activation of IgE-FcεR1 signaling in CMs and CFs. Therapeutic strategies targeting the IgE-FcεR1 axis may be effective for managing IgE-mediated cardiac remodeling.
BackgroundPublic hospitals deliver over ninety percent of all outpatient and inpatient services in China. Their quality is graded into three levels (A, B, and C) largely based on structural resources, but empirical evidence on the quality of process and outcome of care is extremely scarce. As expectations for quality care rise with higher living standards and cost of care, such evidence is urgently needed and vital to improve care and to inform future health reforms.MethodsWe compiled and analyzed a multicenter database of over 4 million inpatient discharge summary records to provide a comprehensive assessment of the level and variations in clinical outcomes of hospitalization at 39 tertiary hospitals in Beijing. We assessed six outcome measures of clinical quality: in-hospital mortality rates (RSMR) for AMI, stroke, pneumonia and CABG, post-procedural complication rate (RS-CR), and failure-to-rescue rate (RS-FTR). The measures were adjusted for pre-admission patient case-mix using indirect standardization method with hierarchical linear mixed models.ResultsWe found good overall quality with large variations by hospital and condition (mean/range, in %): RSMR-AMI: 6.23 (2.37–14.48), RSMR-stroke: 4.18 (3.58–4.44), RSMR-pneumonia: 7.78 (7.20–8.59), RSMR-CABG: 1.93 (1.55–2.23), RS-CR: 11.38 (9.9–12.88), and RS-FTR: 6.41 (5.17–7.58). Hospital grade was not significantly associated with any risk-adjusted outcome measures.ConclusionsGoing to a higher grade public hospital does not always lead to better patient outcome because hospital grade only contains information about hospital structural resources. A hospital report card with some outcome measures of quality would provide valuable information to patients in choosing providers, and for regulators to identify gaps in health care quality. Reducing the variations in clinical practice and patient outcome should be a focus for policy makers in the next round of health sector reforms in China.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.