Hydrogenated titanium dioxide (H-TiO2) nanocrystals were successfully prepared via annealing TiO2 in H2/N2 mixed gas flow at elevated temperatures ranging from 300 to 600 °C. Electron paramagnetic resonance (EPR) spectra were used to determine the produced oxygen vacancy in H-TiO2. Variations in temperature were studied to investigate the concentration change of oxygen vacancy in H-TiO2. The H-TiO2 nanocrystals prepared at different temperatures were employed into photoanodes sensitized by N719 dye and found to have exceptional effect on the solar-to-electric energy conversion efficiency (η). Photoanodes with H-TiO2 nanocrystals hydrogenated at 300 °C show the highest short-circuit current density (Jsc) of 18.92 mA cm(-2) and photoelectrical conversion efficiency of 7.76% under standard AM 1.5 global solar irradiation, indicating a 27 and 28% enhancement in Jsc and η, respectively, in comparison to those with TiO2. The enhancement is attributed to high donor density, narrow band gap and positive shift of flat band energy (Vfb) of H-TiO2 that promote the driving force for electron injection. Intensity-modulated photocurrent spectroscopy (IMPS) accompanied by intensity-modulated photovoltage spectroscopy (IMVS) and other analyses were applied to shed more light on the fundamental mechanisms inside the charge transfer and transport in these systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.