Electric motors are widely used in our society in applications like cars, household appliances, industrial equipment, etc. Costly failures can be avoided by establishing predictive maintenance (PdM) policies or mechanisms for the repair or replacement of the components in electric motors. One of key components in the motors are bearings, and it is critical to measure the key features of bearings to support maintenance decision. This paper proposes a data science approach with embedded statistical data mining and a machine learning algorithm to predict the remaining useful life (RUL) of the bearings in a motor. The vibration signals of the bearings are collected from the experimental platform, and fault detection devices are developed to extract the important features of bearings in time domain and frequency domain. Regression-based models are developed to predict the RUL, and weighted least squares regression (WLS) and feasible generalized least squares regression (FGLS) are used to address the heteroscedasticity problem in the vibration dataset. Support vector regression (SVR) is also applied for prediction benchmarking. Case studies show that the proposed data science approach handled large datasets with ease and predicted the RUL of the bearings with accuracy. The features extracted from time domain are more significant than those extracted from frequency domain, and they benefit engineering knowledge. According to the RUL results, the PdM policy is developed for component replacement at the right moment to avoid the catastrophic equipment failure.
Prognostics and health management (PHM) are gradually being applied to production management processes as industrial production is gradually undergoing a transformation, turning into intelligent production and leading to increased demands on the reliability of industrial equipment. Remaining useful life (RUL) prediction plays a pivotal role in this process. Accurate prediction results can effectively provide information about the condition of the equipment on which intelligent maintenance can be based, with many methods applied to this task. However, the current problems of inadequate feature extraction and poor correlation between prediction results and data still affect the prediction accuracy. To overcome these obstacles, we constructed a new fusion model that extracts data features based on a broad learning system (BLS) and embeds long short-term memory (LSTM) to process time-series information, named as the B-LSTM. First, the LSTM controls the transmission of information from the data to the gate mechanism, and the retained information generates the mapped features and forms the feature nodes. Then, the random feature nodes are supplemented by an activation function that generates enhancement nodes with greater expressive power, increasing the nonlinear factor in the network, and eventually the feature nodes and enhancement nodes are jointly connected to the output layer. The B-LSTM was experimentally used with the C-MAPSS dataset and the results of comparison with several mainstream methods showed that the new model achieved significant improvements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.