An LC-MS/MS method was developed and validated for the simultaneous quantification of edaravone and taurine in beagle plasma. The plasma sample was deproteinized using acetonitrile containing formic acid. Chromatographic separations were achieved on an Agilent Zorbax SB-Aq (100 × 2.1 mm, 3.5 μm) column, with a gradient of water (containing 0.03% formic acid) and methanol as the mobile phase at a flow rate of 0.3 mL/min. The analyte detection was carried out in multiple reaction monitoring mode and the optimized precursor-to-product transitions of m/z [M+H](+) 175.1 → 133.0 (edaravone), m/z [M+H](+) 189.1 → 147.0 (3-methyl-1-p-tolyl-5-pyrazolone, internal standard, IS), m/z [M-H](-) 124.1→80.0 (taurine), and m/z [M-H](-) 172.0 → 80.0 (sulfanilic acid, IS) were employed to quantify edaravone, taurine, and their corresponding ISs, respectively. The LOD and the lower LOQ were 0.01 and 0.05 μg/mL for edaravone and 0.66 and 2 μg/mL for taurine, respectively. The calibration curves of these two analytes demonstrated good linearity (r > 0.99). All the validation data including the specificity, precision, recovery, and stability conformed to the acceptable requirements. This validated method has successfully been applied in the pharmacokinetic study of edaravone and taurine mixture in beagle dogs.
Three liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods were respectively developed and validated for the simultaneous or independent determination of taurine and edaravone in rat plasma using 3-methyl-1-p-tolyl-5-pyrazolone and sulfanilic acid as the internal standards (IS). Chromatographic separations were achieved on an Agilent Zorbax SB-Aq (100 × 2.1 mm, 3.5 µm) column. Gradient 0.03% formic acid-methanol, isocratic 0.1% formic acid-methanol (90:10) and 0.02% formic acid-methanol (40:60) were respectively selected as the mobile phase for the simultaneous determination of two analytes, taurine or edaravone alone. The MS acquisition was performed in multiple reaction monitoring mode with a positive and negative electrospray ionization source. The mass transitions monitored were m/z [M + H](+) 175.1 → 133.0 and [M + H](+) 189.2 → 147.0 for edaravone and its IS, m/z [M - H](-) 124.1 → 80.0 and [M - H](-) 172.0 → 80.0 for taurine and its IS, respectively. The validated methods were successfully applied to study the pharmacokinetic interaction of taurine and edaravone in rats after independent intravenous administration and co-administration with a single dose. Our collective results showed that there were no significant alterations on the main pharmacokinetic parameters (area under concentration-time curve, mean residence time, half-life and clearance) of taurine and edaravone, implying that the proposed combination therapy was pharmacologically feasible.
In this work, two high-performance liquid chromatography (HPLC) assays were developed and validated for the independent determination of edaravone and taurine using 3-methyl-1-p-tolyl-5-pyrazolone and L-glutamine as internal standards. In in vitro experiments, human plasma was separately spiked with a mixture of edaravone and taurine, edaravone or taurine alone. Plasma was precipitated with acetonitrile containing 0.1% formic acid. Ultrafiltration was employed to obtain the unbound ingredients of the two drugs. The factors that might influence the ultrafiltration effiency were elaborately optimized. Plasma supernatant and ultrafiltrate containing taurine were derivated with o-phthalaldehyde and ethanethiol in the presence of 40 mmol/L sodium borate buffer (pH 10.2) at room temperature within 1 min. Chromatographic separations were achieved on an InertSustain C18 column (250 × 4.6 mm, 5 µm). Isocratic 50 mmol/L ammonium acetate-acetonitrile and gradient 50 mmol/L sodium acetate (pH 5.3)-methanol were respectively selected as the mobile phase for the determination of edaravone and taurine. All of the validation data including linearity, extraction recovery, precision, accuracy and stability conformed to the requirements. Results showed that there were no significant alterations in the plasma protein binding rate of taurine and edaravone, implying that the proposed combination therapy was pharmacologically feasible.
Rat renal tubular epithelial cell (RTEC) cultured with high glucose has been used to observe the protective effect of Ginkgo biloba extract (GBE) against diabetic nephropathy (DN). The compounds in GBE binding with cell membrane or entering into cell are still unknown, which may be potential bioactive components. In this paper, a powerful method for screening and analyzing the potential bioactive components from GBE was developed using cell extraction coupled with high performance liquid chromatography tandem mass spectrometry (LC-MS/MS). 8 prototype compounds and 5 metabolites were obtained, among which 6 prototype compounds and 1 metabolite were identified or tentatively characterized as rutin, bilobalide, ginkgolide B, ginkgolide C, genkwanin, apigenin and diosmetin by comparing their retention times and MS spectra with those of authentic standards or literature data. The 6 prototype compounds were further quantitatively analyzed using electrospray ionization in negative mode multiple reaction monitoring (MRM). The results showed that high glucose changed the Tmax, MRT(0-t), Cmax and AUC(0-t) of all observed compounds and decreased the t1/2 of genkwanin and apigenin, significantly. The overall findings indicate that 8 prototype compounds may be the potential bioactive components of GBE with preventive effect against DN and the method of RTEC extraction coupled with LC-MS/MS technology screening method we developed is a feasible, rapid, and useful tool for screening and analyzing potential bioactive components.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.