BackgroundSpasticity is a common sequela of stroke. Traditional assessment methods include relatively coarse scales that may not capture all characteristics of elevated muscle tone. Thus, the aim of this study was to develop a tool to quantitatively assess post-stroke spasticity in the upper extremity.MethodsNinety-six healthy individuals and 46 individuals with stroke participated in this study. The kinematic assessment of passive stretch (KAPS) protocol consisted of passive elbow stretch in flexion and extension across an 80° range in 5 movement durations. Seven parameters were identified and assessed to characterize spasticity (peak velocity, final angle, creep (or release), between-arm peak velocity difference, between-arm final angle, between-arm creep, and between-arm catch angle).ResultsThe fastest movement duration (600 ms) was most effective at identifying impairment in each parameter associated with spasticity. A decrease in peak velocity during passive stretch between the affected and unaffected limb was most effective at identifying individuals as impaired. Spasticity was also associated with a decreased passive range (final angle) and a classic ‘catch and release’ as seen through between-arm catch and creep metrics.ConclusionsThe KAPS protocol and robotic technology can provide a sensitive and quantitative assessment of post-stroke elbow spasticity not currently attainable through traditional measures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.