There is an interest in identifying Anaphase Promoting-Complex/Cyclosome (APC/C) inhibitors that lead to sensitivity to microtubule poisons as a strategy for targeting cancer cells. Using budding yeast Saccharomyces cerevisiae, peptides derived from the Mitotic Arrest Deficient 2 (Mad2)-binding motif of Cell Division Cycle 20 (Cdc20) were observed to inhibit both Cdc20- and CDC20 Homology 1 (Cdh1)-dependent APC/C activity. Over expression of peptides in vivo led to sensitivity to a microtubule poison and, in a recovery from a microtubule poison arrest, delayed degradation of yeast Securin protein Precocious Dissociation of Sisters 1 (Pds1). Peptides with mutations in the Cdc20 activating KILR-motif still bound APC/C, but lost the ability to inhibit APC/C in vitro and lost the ability to induce sensitivity to a microtubule poison in vivo. Thus, an APC/C binding and activation motif that promotes mitotic progression, namely the Cdc20 KILR-motif, can also function as an APC/C inhibitor when present in excess. Another activator for mitotic progression after recovery from microtubule poison is p31comet, where a yeast predicted open-reading frame YBR296C-A encoding a 39 amino acid predicted protein was identified by homology to p31comet, and named Tiny Yeast Comet 1 (TYC1). Tyc1 over expression resulted in sensitivity to microtubule poison. Tyc1 inhibited both APC/CCdc20 and APC/CCdh1 activities in vitro and bound to APC/C. A homologous peptide derived from human p31comet bound to and inhibited yeast APC/C demonstrating evolutionary retention of these biochemical activities. Cdc20 Mad2-binding motif peptides and Tyc1 disrupted the ability of the co-factors Cdc20 and Cdh1 to bind to APC/C, and co-over expression of both together in vivo resulted in an increased sensitivity to microtubule poison. We hypothesize that Cdc20 Mad2-binding motif peptides, Tyc1 and human hp31 peptide can serve as novel molecular tools for investigating APC/C inhibition that leads to sensitivity to microtubule poison in vivo.
Ataxia with oculomotor apraxia type 2 (AOA2), also known as autosomal recessive spinocerebellar ataxia with axonal neuropathy-2 (SCAN2) (OMIM #606002), is a neurodegenerative disorder characterized by early-onset progressive cerebellar ataxia, polyneuropathy, and elevated levels of alpha-fetoprotein. It is caused by mutations in the SETX (OMIM #608465) gene. The prevalence of this disease is widely varied, from non-existent up to 1/150,000, depending on the region. Until now, no cases of AOA2/SCAN2 have been reported in Taiwan. Methods: Next-generation sequencing was used to detect disease-causing mutations of SETX in a Taiwanese patient presenting with autosomal recessive cerebellar ataxia, polyneuropathy, and elevated alpha-fetoprotein. The candidate mutations were further confirmed by polymerase chain reaction (PCR) and Sanger sequencing. Results: A compound heterozygous mutation of SETX c.6859C > T (p.R2287X) and c.7034-7036del was identified. The c.6859C > T (p.R2287X) has been previously found in a Saudi Arabia family, whereas c.7034-7036del is a novel mutation. Both mutations were predicted by bioinformatics programs to be likely pathogenic (having a damaging effect). We also reviewed the literature to address the reported clinical features of AOA2 from different populations. Conclusions: To our knowledge, we are the first to report a Taiwanese patient with AOA2/SCAN2, a result obtained by utilizing next-generation sequencing. The literature review shows that ataxia, polyneuropathy, and elevated AFP are common features and ocular motor apraxia (OMA) is a variable sign of AOA2 from different populations. OMA is rare and saccadic ocular pursuit and nystagmus are common in East Asian AOA2.
The information regarding bronchiectasis with RA (BROS) is limited in Asia. The objective of this study was to investigate the clinical characteristics and outcomes of BROS in Taiwan. This multi-institute cohort study included patients with BROS from January 2006 to December 2017. The clinical, functional and microbiological data of these patients were retrieved from the Chang Gung Research Database. Respiratory failure and mortality were the primary outcomes. Severe exacerbation was defined as bronchiectasis- related hospitalizations or emergency department visits. A total of 343 patients with BROS were identified. One hundred and eight patients had severe exacerbation and exhibited significantly more previous exacerbations, a lower FEV1 and higher BACI score (11.1 vs. 7.5) than patients without severe exacerbation. The most prevalent species in sputum were Non-tuberculous mycobacteria (NTM) (14.8 %), Pseudomonas aeruginosa (14.2 %), and fungus (5.9%). 68.8% of BROS patients used disease modifying antirheumatic drugs (DMARD), 7.9% used biological DMARD. NTM and tuberculosis infection rates were higher in bDMARD group compared with nbDMARD group and others. Overall, the 3-year respiratory failure rate and mortality rate were 14.6 and 25.7% respectively. Patients with RA diagnosed before bronchiectasis had a significantly higher cumulative incidence of mortality in a 3-year follow-up than those with RA diagnosed after bronchiectasis. In Cox regression, age, higher RF value and systemic steroid use were independent risk factors for mortality in BROS. BROS patients with severe exacerbation had a high mortality rate in Taiwan. bDMARD is associated with a trend of increased risk of NTM and TB infections.
BackgroundA recent Taiwanese study reported variants of the ubiquinol-cytochrome c reductase core protein 1 (UQCRC1) gene linked to autosomal dominant parkinsonism with polyneuropathy. This study investigated the pathogenicity of UQCRC1 in a Taiwanese cohort of patients with Parkinson's disease (PD).MethodThis study involved 107 participants (98 with early-onset PD and nine with familial PD). All UQCRC1 coding exons and exon–intron boundaries were sequenced. The rarity and pathogenicity of the identified variants were analyzed. The carrier frequencies of our cohort and the Taiwan Biobank were compared through a Pearson's χ2 or Fisher's exact test along with Bonferroni corrections.ResultsThree missense variants (c.643G > C, p.D215H; c.800C > G, p.P267R, and c.923A > G, p.N308S) and seven rare variants were identified. No significant differences in the missense-variant carrier frequency were noted between our cohort and individuals in the Taiwan Biobank. Furthermore, no significant associations were noted between the variants and the risk of PD.ConclusionsOur study is not supporting a role of UQCRC1 variants in PD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.