Cyanobacteria are fast-growing, genetically accessible, photoautotrophs. Therefore, they have attracted interest as sustainable production platforms. However, the lack of techniques to systematically optimize cultivation parameters in a high-throughput manner is holding back progress towards industrialization. To overcome this bottleneck, here we introduce a droplet-based microfluidic platform capable of one-(1D) and two-dimension (2D) screening of key parameters in cyanobacterial cultivation. We successfully grew three different unicellular, biotechnologically relevant, cyanobacteria: Synechocystis sp. PCC 6803, Synechococcus elongatus UTEX 2973 and Synechococcus sp. UTEX 3154. This was followed by a highly-resolved 1D screening of nitrate, phosphate, carbonate, and salt concentrations. The 1D screening results suggested that nitrate and/or phosphate may be limiting nutrients in standard cultivation media. Finally, we use 2D screening to determine the optimal N:P ratio of BG-11. Application of the improved medium composition in a high-density cultivation setup led to an increase in biomass yield of up to 15.7%. This study demonstrates that droplet-based microfluidics can decrease the volume required for cyanobacterial cultivation and screening up to a thousand times while significantly increasing the multiplexing capacity. Going forward, microfluidics have the potential to play a significant role in the industrial exploitation of cyanobacteria.
A micro segmented-flow approach was utilized for the isolation soil bacteria that can degrade synthetic polymers as polyethylene glycols (PEG) and polyacrylamide (PAM). We had been able to obtain many strains; among them, five Achromobacter spanius strains from soil samples of specific sampling sites that were connected with ancient human impacts. In addition to the characterization of community responses and isolating single strains, this microfluidic approach allowed for investigation of the susceptibility of Achromobacter spanius strains against three synthetic polymers, including PEG, PAM, and Polyvinylpyrrolidone (PVP) and two organic solvents known as 1,4-dioxane and diglyme. The small stepwise variation of effector concentrations in 500 nL droplets provides a detailed reflection of the concentration-dependent response of bacterial growth and endogenous autofluorescence activity. As a result, all five strains can use PEG600 as carbon source. Furthermore, all strains showed similar dose-response characteristics in 1,4-dioxane and diglyme. However, significantly different PAM- and PVP-tolerances were found for these strains. Samples from the surface soil of prehistorical rampart areas supplied a strain capable of degradation of PEG, PVP, and PAM. This study demonstrates on the one hand, the potential of microsegment flow for miniaturized dose-response screening studies and its ability to detect novel strains, and on the other hand, two of five isolated Achromobacter spanius strains may be useful in providing optimal growth conditions in bioremediation and biodegradation processes.
Cathode-associated microbial communities (caMCs) are the functional key elements in the conversion of excess electrical energy into biomass. In this study, we investigated the development of electrochemical caMCs based on two-chamber microbial electrolytic cells (MECs) after optimization of media composition. Microbial communities obtained from a historical soil sample were inoculated into the cathode chamber of MECs. The inorganic medium with (A) carbon dioxide in air or (B) 100 mM sodium bicarbonate as carbon source was used in the absence of any organic carbon source. After 12 days of operation, the experimental results showed that (1) the bacterial community in group B exhibited lush growth and (2) a single strain TX168 Epilithonimonas bovis isolated from group A indicated electrochemical activity and synthesized large volumes of biomass using sodium bicarbonate. We also analyzed the caMCs of the MECs and reference samples without electro-cultivation using 16S rRNA gene sequencing. The results showed that the caMCs of MECs in groups A and B were dominated by the genera Acinetobacter and Pseudomonas. The caMCs were further inoculated and cultured on different agars to isolate specific electroactive bacterial strains. Overall, our study highlights the possibility of converting excess energy into biomass by electro-cultivation and the importance of selecting appropriate media to enrich specific microbial communities and single strains in MECs.
The urgent need to increase sustainability in biotechnology has led to an increased interest in photosynthetic production platforms. Cyanobacteria are particularly attractive for their fast photoautotrophic growth and genetic accessibility. However, the lack of systematic strain optimization is holding back progress towards industrialization. To overcome this bottleneck, here we introduce a droplet-based microfluidics platform capable of one- (1D) and two-dimension (2D) screening of key parameters in cyanobacterial cultivation. We successfully grew three different unicellular, biotechnologically relevant cyanobacteria: Synechocystis sp. PCC 6803, Synechococcus elongatus UTEX 2973 and Synechococcus sp. UTEX 3154. Highly-resolved 1D screening of nitrate, phosphate, carbonate, and salt content show that nitrate and/or phosphate can be limiting in standard cultivation media. Finally, we show that 2D screening results from our microfluidic setup translate well to a laboratory scale high-density cultivation setup. This study demonstrates that droplet-based microfluidics by micro segmented-flow are a powerful tool for high-throughput optimization of cyanobacterial cultivation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.