The Kdp system is widely distributed among bacteria. In Escherichia coli, the Kdp-ATPase is a high-affinity K ؉ uptake system and its expression is activated by the KdpDE two-component system in response to K ؉ limitation or salt stress. However, information about the role of this system in many bacteria still remains obscure. Here we demonstrate that KdpFABC in Staphylococcus aureus is not a major K ؉ transporter and that the main function of KdpDE is not associated with K ؉ transport but that instead it regulates transcription for a series of virulence factors through sensing external K ؉ concentrations, indicating that this bacterium might modulate its infectious status through sensing specific external K ؉ stimuli in different environments. Our results further reveal that S. aureus KdpDE is upregulated by the Agr/RNAIII system, which suggests that KdpDE may be an important virulence regulator coordinating the external K ؉ sensing and Agr signaling during pathogenesis in this bacterium.
Autoinducer 2 (AI-2) is widely recognized as a signal molecule for intra-and interspecies communication inGram-negative bacteria, but its signaling function in Gram-positive bacteria, especially in Staphylococcus aureus, remains obscure. Here we reveal the role of LuxS in the regulation of capsular polysaccharide synthesis in S. aureus NCTC8325 and show that AI-2 can regulate gene expression and is involved in some physiological activities in S. aureus as a signaling molecule. Inactivation of luxS in S. aureus NCTC8325 resulted in higher levels of transcription of capsular polysaccharide synthesis genes. The survival rate of the luxS mutant was higher than that of the wild type in both human blood and U937 macrophages. In comparison to the luxS mutant, a culture supplemented with chemically synthesized 4,5-dihydroxy-2,3-pentanedione (DPD), the AI-2 precursor molecule, restored all the parental phenotypes, suggesting that AI-2 has a signaling function in S. aureus. Furthermore, we demonstrated that the LuxS/AI-2 signaling system regulates capsular polysaccharide production via a two-component system, KdpDE, whose function has not yet been clarified in S. aureus. This regulation occurred via the phosphorylation of KdpE binding to the cap promoter.Quorum sensing (QS) is a cell-cell communication mechanism in which bacteria secrete and sense small diffusible molecules called autoinducers (AIs) to coordinate social activities, such as bioluminescence, biofilm formation, swarming behavior, antibiotic production, and virulence factor secretion (7,23,38,59). Many QS mechanisms have evolved among bacteria. In general, Gram-negative bacteria use acylated homoserine lactones (AHLs) as AIs, and Gram-positive bacteria use oligopeptide AIs, which act through two-component phosphorelay cascades. Studies have shown that one QS mechanism is shared by both Gram-positive and Gram-negative bacteria and involves the production of autoinducer 2 (AI-2) (4, 38, 59, 60), which is synthesized by the LuxS enzyme in a metabolic pathway known as the activated methyl cycle (50,57,61). AI-2 is not a single compound but a family of interconverting compounds derived from 4,5-dihydroxy-2,3-pentanedione (DPD), which cyclizes spontaneously to form two epimeric furanoses, (2R,4S)-and (2S,4S)-2,4-dihydroxy-2-methyldihydrofuran-3-one (R-and S-DHMF), respectively. Hydration of R-and S-DHMF produces (2R, 4S)-and (2S, 4S)-2-methyl-2,3,3,4-tetrahydroxytetrahydrofuran (R-and S-THMF), respectively (40). In contrast to the other autoinducers that are usually involved in intraspecies communication, AI-2 is widely present in bacteria, leading to the suggestion that it is a universal language for interspecies communication (50,64).The LuxS/AI-2 system is a more recently described QS system which was first identified in Vibrio harveyi, where it functions as part of a complex multilayered QS system to regulate bioluminescence (9, 10). LuxS plays a metabolic role in the activated methyl cycle, and one molecule of DPD is formed as a by-product every one cycle. Thi...
In quorum sensing (QS) process, bacteria regulate gene expression by utilizing small signaling molecules called autoinducers in response to a variety of environmental cues. Autoinducer 2 (AI-2), a QS signaling molecule proposed to be involved in interspecies communication, is produced by many species of gram-negative and gram-positive bacteria. In Escherichia coli and Salmonella typhimurium, the extracellular AI-2 is imported into the cell by a transporter encoded by the lsr operon. Upstream of the lsr operon, there is a divergently transcribed gene encoding LsrR, which was reported previously to repress the transcription of the lsr operon and itself. Here, we have demonstrated for the first time that LsrR represses the transcription of the lsr operon and itself by directly binding to their promoters using gel shift and DNase I footprinting assays. The β-galactosidase reporter assays further suggest that two motifs in both the lsrR and lsrA promoter regions are crucial for the LsrR binding. Furthermore, in agreement with the conclusion that phosphorylated AI-2 can relieve the repression of LsrR in previous studies, our data show that phospho-AI-2 renders LsrR unable to bind to its own promoter in vitro.
Staphylococcus aureus, a Gram-positive bacterium causes a number of devastating human diseases, such as infective endocarditis, osteomyelitis, septic arthritis and sepsis. S. aureus SraP, a surface-exposed serine-rich repeat glycoprotein (SRRP), is required for the pathogenesis of human infective endocarditis via its ligand-binding region (BR) adhering to human platelets. It remains unclear how SraP interacts with human host. Here we report the 2.05 Å crystal structure of the BR of SraP, revealing an extended rod-like architecture of four discrete modules. The N-terminal legume lectin-like module specifically binds to N-acetylneuraminic acid. The second module adopts a β-grasp fold similar to Ig-binding proteins, whereas the last two tandem repetitive modules resemble eukaryotic cadherins but differ in calcium coordination pattern. Under the conditions tested, small-angle X-ray scattering and molecular dynamic simulation indicated that the three C-terminal modules function as a relatively rigid stem to extend the N-terminal lectin module outwards. Structure-guided mutagenesis analyses, in addition to a recently identified trisaccharide ligand of SraP, enabled us to elucidate that SraP binding to sialylated receptors promotes S. aureus adhesion to and invasion into host epithelial cells. Our findings have thus provided novel structural and functional insights into the SraP-mediated host-pathogen interaction of S. aureus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.