Based on Reissner’s mixed variational theorem (RMVT), finite cylindrical layer methods (FCLMs) were developed for the three-dimensional (3D) free vibration analysis of simply supported, functionally graded material (FGM) sandwich circular hollow cylinders. The FGM sandwich cylinder consists of a thick and soft FGM core bounded with two thin and stiff homogeneous material face sheets, in which the material properties of the FGM core are assumed to obey an exponent-law varying exponentially with the thickness coordinate. In this formulation, the FGM sandwich cylinder is divided into a number of equal-thickness cylindrical layers, where the trigonometric functions and Lagrange polynomials are used to interpolate the in- and out-of-surface variations of the field variables of each individual layer, respectively. An h-refinement process instead of a p-refinement one is adopted to yield the convergent solutions in this study, and the layerwise linear, quadratic or cubic function distribution through the thickness coordinate is thus assumed for the related field variables. The accuracy and convergence of the RMVT-based FCLMs developed in this article are assessed by comparing their solutions with the exact 3D solutions available in the literature.
In this article, poly(N-methyl acryloylglycine methyl ester) (PNMAME) was prepared as a novel thermosensitive material with a lower critical solution temperature (LCST) at around 49.5°C. The chemical structures of the monomer NMAME and PNMAME were characterized by 1 H NMR and IR measurements. The LCST was investigated systematically as a function of PNMAME concentration, inorganic salt solution and pH value. The results indicated that LCST of PNMAME was obviously dependent on PNMAME concentration and pH. The LCST was increased with a decrease in pH value and PNMAME concentration. To obtain a thermo-sensitive hydrogel with the phase transition temperature close to human body temperature, the copolymerization was conducted between NMAME and N-acryloylglycine ethyl ester (NAGEE). The release behavior of caffeine was evaluated at different temperatures and contents of cross-linkers (N, N-methylenebis(acrylamide) (NMBA)). The increase of cross-linker content led to a decrease in the release rate of caffeine due to higher crossing density in the hydrogel network. In addition, a faster release of caffeine from the hydrogel with 3% NMBA at 37°C was found in contrast to that at 18°C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.