Cell membrane cloaking is an emerging field in drug delivery in which specific functions of parent cells are conferred to newly formed biomimetic vehicles. A growing variety of delivery systems with diverse surface properties have been utilized for this strategy, but it is unclear whether the affinity of membrane−core pairs could guarantee effective and proper camouflaging. In this study, we propose a concise and effective "molecular affinity" strategy using the intracellular domain of transmembrane receptors as "grippers" during membrane coating. Red blood cell (RBC) membranes and cationic liposomes were adopted for fabrication, and a peptide ligand derived from the cytoplasmic protein P4.2 was prepared to specifically recognize the cytoplasmic domain of band 3, a key transmembrane receptor of erythrocytes. Once anchored onto the liposome surface, the P4.2-derived peptide would interact with the isolated RBC membrane, forming a "hidden peptide button", which ensures the right-side-out orientation. The membrane-coated liposomes exhibited an appropriate size distribution around 100 nm and high stability, with superior circulation durations compared with those of conventional PEGylated liposomes. Importantly, they possessed the ability to target Candida albicans by the interaction between the pathogenic fungus and host erythrocytes and to neutralize hemotoxin secreted by the pathogenic fungi. The curative effect of the model drug was thus substantially improved. In summary, the "molecular affinity" strategy may provide a powerful and universal approach for the construction of cell membrane-coated biomaterials and nanomedicines at both laboratory and industrial scales.
We have disclosed a new synthetic method for the rapid assembly of poly-substituted pyrroles with readily accessible oximes and azadienes as the starting materials. The present approach generates an array...
In the presence of a copper catalyst, a series of oximes undergo deconstructive insertion into coumarins to afford structurally interesting dihydrobenzofuran-fused pyridones in moderate to good yields with good functional group compatibility. The reaction likely involves a radical relay annulation, leading to the ring opening of the lactone moiety of the coumarins, and simultaneous formation of three new bonds. The investigation of photoluminescent properties reveals that several obtained compounds may have potential as fluorescent materials.
Bridged tetracyclic nitrogen scaffolds are found in numerous biologically active molecules and medicinally relevant structures. Traditional methods usually require tedious reaction steps, and/or the use of structurally specific starting materials....
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.