Electron transfer is the rate‐limiting step in photocatalytic water splitting. Viologen and its derivatives are able to act as electron‐transfer mediators (ETMs) to facilitate the rapid electron transfer from photosensitizers to active sites. Nevertheless, the electron‐transfer ability often suffers from the formation of a stable dipole structure through the coupling between cationic‐radical‐containing viologen‐derived ETMs, by which the electron‐transfer process becomes restricted. Herein, cyclic diquats, a kind of viologen‐derived ETM, are integrated into a 2,2′‐bipyridine‐based covalent organic framework (COF) through a post‐quaternization reaction. The content and distribution of embedded diquat‐ETMs are elaborately controlled, leading to the favorable site‐isolated arrangement. The resulting materials integrate the photosensitizing units and ETMs into one system, exhibiting the enhanced hydrogen evolution rate (34600 μmol h−1 g−1) and sustained performances when compared to a single‐module COF and a COF/ETM mixture. The integration strategy applied in a 2D COF platform promotes the consecutive electron transfer in photochemical processes through the multi‐component cooperation.
Lithium metal is an exciting anode candidate with extra high theoretical specific capacity for new high‐energy rechargeable batteries. However, uncontrolled Li deposition and an unsteady solid electrolyte interface seriously obstruct the commercial application of Li anodes in Li metal batteries. Herein, 3D carbon cloth (CC) supporting N‐doped carbon (CN) nanosheet arrays embedded with tiny Co nanoparticles (CC@CN‐Co) are employed as a lithiophilic framework to regulate homogenous Li nucleation/growth behavior in a working Li metal anode. The emergence of Li dendrites is supposed to be inhibited by the conductive 3D scaffold that reduces local current density. The uniform nucleation of Li can be guided by N‐containing functional groups as they have a strong interaction with Li atoms, and the tiny Co nanoparticles can provide active sites to guide Li deposition. As a result, the current CC@CN‐Co host exhibits Li dendrite–free features and stable cycling performance with a low overpotential (20 mV) throughout 800 h cycles. When paired with the typical LiFePO4 (LFP) cathode, the assembled CC@CN‐Co@Li//LFP@C full cell exhibits outstanding rate capability and improved cycling performance.
DNA flap endonuclease 1 (FEN1) plays critical roles in maintaining genome stability and integrity by participating in both DNA replication and repair. Suppression of FEN1 in cells leads to the retardation of DNA replication and accumulation of unrepaired DNA intermediates, resulting in DNA double strand breaks (DSBs) and apoptosis. Therefore, targeting FEN1 could serve as a potent strategy for cancer therapy. In this study, we demonstrated that FEN1 is overexpressed in breast cancers and is essential for rapid proliferation of cancer cells. We showed that manipulating FEN1 levels in cells alters the response of cancer cells to chemotherapeutic drugs. Furthermore, we identified a small molecular compound, SC13 that specifically inhibits FEN1 activity, thereby interfering with DNA replication and repair in vitro and in cells. SC13 suppresses cancer cell proliferation and induces chromosome instability and cytotoxicity in cells. Importantly, SC13 sensitizes cancer cells to DNA damage-inducing therapeutic modalities and impedes cancer progression in a mouse model. These findings could establish a paradigm for the treatment of breast cancer and other cancers as well.
With the increasing demand for fuel causing serious environmental pollution, it is urgent to develop new and environmentally friendly energy conversion devices. These energy conversion devices, however, require good, inexpensive materials for electrodes and so on. The multifunctional properties of porphyrins enable framework materials (e.g., metal-organic frameworks and covalent organic frameworks) to be applied in energy conversion devices due to their simple synthesis, high chemical stability, abundant metallic active sites, adjustable crystalline structure and high specific surface area. Herein, the types of porphyrin structural blocks are briefly reviewed. They can be used as organic ligands or directly assembled with framework materials to generate high-performance electro-/photo-catalysts. These types of catalysts applied in electro-/photo-catalytic water splitting, electro-/photo-catalytic carbon dioxide reduction, and electrocatalytic oxygen reduction are also summarized and introduced. At the end of the article, we present the challenges of porphyrin-based framework materials in the above application and corresponding solutions. We expect porphyrin-based framework materials to flourish energy conversion in the coming years.
Two-dimensional covalent organic frameworks (2D COFs) featuring periodic frameworks, extended π-conjugation and layered stacking structures, have emerged as a promising class of materials for photocatalytic hydrogen evolution. Nevertheless, the layer-by-layer assembly in 2D COFs is not stable during the photocatalytic cycling in water, causing disordered stacking and declined activity. Here, we report an innovative strategy to stabilize the ordered arrangement of layered structures in 2D COFs for hydrogen evolution. Polyethylene glycol is filled up in the mesopore channels of a β-ketoenamine-linked COF containing benzothiadiazole moiety. This unique feature suppresses the dislocation of neighbouring layers and retains the columnar π-orbital arrays to facilitate free charge transport. The hydrogen evolution rate is therefore remarkably promoted under visible irradiation compared with that of the pristine COF. This study provides a general post-functionalization strategy for 2D COFs to enhance photocatalytic performances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.