The ethylene response factor (ERF) family is one of the largest plant-specific transcription factor families, playing an important role in plant development and response to stresses. The ERF76 gene is a member of the poplar ERF transcription factor gene family. First, we validated that the ERF76 gene expressed in leaf and root tissues is responsive to salinity stress. We then successfully cloned the ERF76 cDNA fragment containing an open reading frame from di-haploid Populus simonii × Populus nigra and proved that ERF76 protein is targeted to the nucleus. Finally, we transferred the gene into the same poplar clone by the Agrobacterium-mediated leaf disc method. Using both RNA-Seq and reverse transcription-quantitative polymerase chain reaction, we validated that expression level of ERF76 is significantly higher in transgenic plants than that in the nontransgenic control. Using RNA-Seq data, we have identified 375 genes that are differentially expressed between the transgenic plants and the control under salt treatment. Among the differentially expressed genes, 16 are transcription factor genes and 45 are stress-related genes, both of which are upregulated significantly in transgenic plants, compared with the control. Under salt stress, the transgenic plants showed significant increases in plant height, root length, fresh weight, and abscisic acid (ABA) and gibberellin (GA) concentration compared with the control, suggesting that overexpression of ERF76 in transgenic poplar upregulated the expression of stress-related genes and increased the ability of ABA and GA biosynthesis, which resulted in stronger tolerance to salt stress.
Background The bZIP gene family, which is widely present in plants, participates in varied biological processes including growth and development and stress responses. How do the genes regulate such biological processes? Systems biology is powerful for mechanistic understanding of gene functions. However, such studies have not yet been reported in poplar. Results In this study, we identified 86 poplar bZIP transcription factors and described their conserved domains. According to the results of phylogenetic tree, we divided these members into 12 groups with specific gene structures and motif compositions. The corresponding genes that harbor a large number of segmental duplication events are unevenly distributed on the 17 poplar chromosomes. In addition, we further examined collinearity between these genes and the related genes from six other species. Evidence from transcriptomic data indicated that the bZIP genes in poplar displayed different expression patterns in roots, stems, and leaves. Furthermore, we identified 45 bZIP genes that respond to salt stress in the three tissues. We performed co-expression analysis on the representative genes, followed by gene set enrichment analysis. The results demonstrated that tissue differentially expressed genes, especially the co-expressing genes, are mainly involved in secondary metabolic and secondary metabolite biosynthetic processes. However, salt stress responsive genes and their co-expressing genes mainly participate in the regulation of metal ion transport, and methionine biosynthetic. Conclusions Using comparative genomics and systems biology approaches, we, for the first time, systematically explore the structures and functions of the bZIP gene family in poplar. It appears that the bZIP gene family plays significant roles in regulation of poplar development and growth and salt stress responses through differential gene networks or biological processes. These findings provide the foundation for genetic breeding by engineering target regulators and corresponding gene networks into poplar lines.
Drought stress is a major factor that contributes to disease susceptibility and yield loss in agricultural crops. To identify drought responsive proteins and explore metabolic pathways involved in maize tolerance to drought stress, two maize lines (B73 and Lo964) with contrasting drought sensitivity were examined. The treatments of drought and well water were applied at 14 days after pollination (DAP), and protein profiles were investigated in developing kernels (35 DAP) using iTRAQ (isobaric tags for relative and absolute quantitation). Proteomic analysis showed that 70 and 36 proteins were significantly altered in their expression under drought treatments in B73 and Lo964, respectively. The numbers and levels of differentially expressed proteins were generally higher in the sensitive genotype, B73, implying an increased sensitivity to drought given the function of the observed differentially expressed proteins, such as redox homeostasis, cell rescue/defense, hormone regulation and protein biosynthesis and degradation. Lo964 possessed a more stable status with fewer differentially expressed proteins. However, B73 seems to rapidly initiate signaling pathways in response to drought through adjusting diverse defense pathways. These changes in protein expression allow for the production of a drought stress-responsive network in maize kernels.
BackgroundHypertension is a highly prevalent disease and the leading cause of chronic kidney disease (CKD). Metabolic syndrome could also be the risk factor for CKD. We sought to study the association between metabolic syndrome components and the prevalence of CKD in patients with hypertension.MethodsWe carried out a multi-center cross-sectional study from Apr. 2017- Apr. 2018 in 15 cities in China.ResultsA total of 2484 patients with hypertension were enrolled. Among them, 56% were male and the average age was 65.12 ± 12.71 years. The systolic BP/diastolic BP was 142 ± 18/83 ± 12 mmHg. Metabolic syndrome components turned out to be highly prevalent in patients with hypertension, ranging from 40 to 58%. The prevalence of chronic kidney disease reached 22.0%. Multi-variate logistic analysis revealed that elevated triglyceride (TG) (OR = 1.81, 95% CI 1.28–2.57, p < 0.01), elevated fasting blood glucose (FBG) (OR = 1.43, 95% CI 1.00–2.07, p = 0.05) and hypertension grades (OR = 1.20, 95% CI 1.00–1.44, p = 0.05) were associated with the prevalence of CKD. In sub-group analysis, elevated TG remained strongly associated with CKD in both diabetes (OR = 2.10, 95%CI 1.22–3.61, p < 0.01) and non-diabetes (OR = 1.53, 95% CI 1.09–2.16, p = 0.01). In sub-group analysis of hypertension grades, there was also a graded trend between elevated TG and CKD from controlled blood pressure (BP) to hypertension grade 2 (OR = 1.81, 95%CI 1.06–3.11, p = 0.03; OR = 1.85, 95%CI 1.00–3.43, p = 0.05; OR = 2.81, 95% CI 1.09–7.28, p = 0.03, respectively).ConclusionElevated TG, elevated FBG and hypertension grades were significantly associated with the prevalence of CKD in patients with hypertension. Particularly, elevated TG was strongly associated with CKD, independent of diabetes and hypertension grades.
Background Xyloglucan endotransglucosylase/hydrolase (XTH) family plays an important role in cell wall reconstruction and stress resistance in plants. However, the detailed characteristics of XTH family genes and their expression pattern under salt stress have not been reported in poplar. Results In this study, a total of 43 PtrXTH genes were identified from Populus simonii × Populus nigra, and most of them contain two conserved structures (Glyco_hydro_16 and XET_C domain). The promoters of the PtrXTH genes contain mutiple cis-acting elements related to growth and development and stress responses. Collinearity analysis revealed that the XTH genes from poplar has an evolutionary relationship with other six species, including Eucalyptus robusta, Solanum lycopersicum, Glycine max, Arabidopsis, Zea mays and Oryza sativa. Based on RNA-Seq analysis, the PtrXTH genes have different expression patterns in the roots, stems and leaves, and many of them are highly expressed in the roots. In addition, there are11 differentially expressed PtrXTH genes in the roots, 9 in the stems, and 7 in the leaves under salt stress. In addition, the accuracy of RNA-Seq results was verified by RT-qPCR. Conclusion All the results indicated that XTH family genes may play an important role in tissue specificity and salt stress response. This study will lay a theoretical foundation for further study on molecular function of XTH genes in poplar.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.