Changes in ambient temperature influence crop fertility and production. Understanding of how crops sense and respond to temperature is thus crucial for sustainable agriculture. The thermosensitive genic male-sterile (TGMS) lines are widely used for hybrid rice breeding and also provide a good system to investigate the mechanisms underlying temperature sensing and responses in crops. Here, we show that OsMS1 is a histone binding protein, and its natural allele OsMS1wenmin1 confers thermosensitive male sterility in rice. OsMS1 is primarily localized in nuclei, while OsMS1wenmin1 is localized in nuclei and cytoplasm. Temperature regulates the abundances of OsMS1 and OsMS1wenmin1 proteins. The high temperature causes more reduction of OsMS1wenmin1 than OsMS1 in nuclei. OsMS1 associates with the transcription factor TDR to regulate expression of downstream genes in a temperature-dependent manner. Thus, our findings uncover a thermosensitive mechanism that could be useful for hybrid crop breeding.
The thermal management system of a power battery is crucial to the safety of battery operation; however, for the phase-change material (PCM) thermal management system of a battery, the thermal cycling of phase-change material under large discharge rate conditions will lead to thermal conductivity degradation and thermal stress problems. A method of manufacturing PCM containers with metal fins to package pure phase-change material is put forward to solve the problem. The system temperature under different conditions is studied using numerical and experimental methods. A thermal resistance model is built to analyze the thermal transfer performance of PCM containers with fins. The results show that the PCM container structure can effectively control the battery temperature within the suitable temperature range under the low discharge rate, but the maximum temperature of the battery pack at the high discharge rate of 3 C will exceed the optimum operating temperature range. Adding fins can reduce the maximum temperature and improve the system temperature uniformity. By combining fins with forced-air cooling, the maximum temperature and maximum temperature difference of the battery pack at a high discharge rate can be effectively reduced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.