In this paper, we propose a reaction‐diffusion system to describe the spread of infectious diseases within two population groups by self and criss‐cross infection mechanism. Firstly, based on the eigenvalues, we give two methods for the calculation of the critical wave speed c∗. Secondly, by constructing a pair of upper‐lower solutions and using the Schauder fixed‐point theorem, we prove that the system admits positive traveling wave solutions, which connect the initial disease‐free equilibrium false(u10,0,u30,0false) at t = −∞, but the traveling waves need not connect the final disease‐free equilibrium false(u1∗,0,u3∗,0false) at t = +∞. Hence, we study the asymptotic behaviors of the traveling wave solutions to show that the traveling wave solutions converge to false(u1∗,0,u3∗,0false) at t = +∞. Finally, by the two‐sided Laplace transform, we establish the nonexistence of traveling waves for the model. The approach in this paper provides an effective method to deal with the existence of traveling wave solutions for the nonmonotone reaction‐diffusion systems consisting of four equations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.