Regulation of apoptosis at various stages of differentiation plays an important role in spermatogenesis. Therefore, the identification and characterisation of highly expressed genes in the testis that are involved in apoptosis is of great value to delineate the mechanism of spermatogenesis. Here, we reported that Fank1, a novel gene highly expressed in testis, functioned as an anti-apoptotic protein that activated the activator protein 1 (AP-1) pathway. We found that Jab1 (Jun activation domain-binding protein 1), a co-activator of AP-1, specifically interacted with Fank1. Reporter analyses showed that Fank1 activated AP-1 pathway in a Jab1-dependent manner. Fank1 overexpression also increased the expression and activation of endogenous c-Jun. Further study showed that Fank1 inhibited cell apoptosis by upregulating and activating endogenous c-Jun and its downstream target, Bcl-3. This process was shown to be Jab1 dependent. Taken together, our results indicated that by interacting with Jab1, Fank1 could suppress cell apoptosis by activating the AP-1-induced anti-apoptotic pathway.
We have previously identified a tyrosine kinase-independent, guanine nucleotide exchange factor (GEF) activity that is contained within the region of p210 BCR/ABL that distinguishes it from p190 BCR/ABL. In the current study we have compared the transforming activity of p190 BCR/ABL, p210 BCR/ABL, and a mutant that lacks GEF activity (p210 BCR/ABL(S509A)). In cell-based, ex vivo, and murine bone marrow transplantation assays (BMT) the transforming activity of p210 BCR/ABL(S509A) mimics p190 BCR/ABL, and is distinct from p210 BCR/ABL. Thus, in the BMT assay, the p190 BCR/ABL and p210 BCR/ABL(S509A) transplanted mice exhibit a more rapid onset of disease than mice transplanted with p210 BCR/ABL. The reduced disease latency is associated with erythroid hyperplasia in the absence of anemia, and expansion of the MEP, CMP and GMP populations, producing a phenotype that is similar to acute myeloid leukemia (AML-M6). The disease phenotype is readily transplantable into secondary recipients. This is consistent with ex vivo clonogenicity assays where p210 BCR/ABL preferentially supports the growth of CFU-GM, while p190 BCR/ABL and the mutant preferentially support the growth of BFU-E. These results suggest that the GEF activity that distinguishes p210 BCR/ABL from p190 BCR/ABL actively regulates disease progression.
f Rb is critical for promoting cell cycle exit in cells undergoing terminal differentiation. Here we show that during erythroid terminal differentiation, Rb plays a previously unappreciated and unorthodox role in promoting DNA replication and cell cycle progression. Specifically, inactivation of Rb in erythroid cells led to stressed DNA replication, increased DNA damage, and impaired cell cycle progression, culminating in defective terminal differentiation and anemia. Importantly, all of these defects associated with Rb loss were exacerbated by the concomitant inactivation of E2f8. Gene expression profiling and chromatin immunoprecipitation (ChIP) revealed that Rb and E2F8 cosuppressed a large array of E2F target genes that are critical for DNA replication and cell cycle progression. Remarkably, inactivation of E2f2 rescued the erythropoietic defects resulting from Rb and E2f8 deficiencies. Interestingly, real-time quantitative PCR (qPCR) on E2F2 ChIPs indicated that inactivation of Rb and E2f8 synergizes to increase E2F2 binding to its target gene promoters. Taken together, we propose that Rb and E2F8 collaborate to promote DNA replication and erythroid terminal differentiation by preventing E2F2-mediated aberrant transcriptional activation through the ability of Rb to bind and sequester E2F2 and the ability of E2F8 to compete with E2F2 for E2f-binding sites on target gene promoters.
The retinoblastoma (Rb) tumor suppressor plays important roles in regulating hematopoiesis, particularly erythropoiesis. In an effort to understand whether Rb function can be mediated by E2F transcription factors in a BM-derived hematopoietic system in mice, we uncovered a functional synergy between Rb and E2F8 to promote erythropoiesis and to prevent anemia. Specifically, whereas Mx1-Cre-mediated inactivation of Rb or E2f8 in hematopoietic stem cells only led to mild erythropoietic defects, concomitant inactivation of both genes resulted in marked ineffective erythropoiesis and mild hemolysis, leading to severe anemia despite the presence of enhanced extramedullary erythropoiesis. Interestingly, although ineffective erythropoiesis was already present in the Rb ⌬/⌬ mice and exacerbated in the Rb ⌬/⌬ ;E2f8 ⌬/⌬ mice, hemolysis was exclusively manifested in the double-knockout mice. Using an adoptive transfer system and an erythroidspecific knockout system, we have shown that the synergy of Rb and E2f8 deficiency in triggering severe anemia is intrinsic to the erythroid lineage. Surprisingly, concomitant inactivation of Rb and E2f7, a close family member of E2f8, did not substantially worsen the erythropoietic defect resulted from Rb deficiency. The results of the present study reveal the specificity of E2F8 in mediating Rb function in erythropoiesis and suggest critical and overlapping roles of Rb and E2f8 in maintaining normal erythropoiesis and in preventing hemolysis. (Blood.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.