With the rapid development of information in modern society, the research and development of advanced anti-counterfeiting technology is becoming more and more important to protect the security and comprehensiveness of information. Therefore, fluorescent ink as an anti-counterfeiting technology and fingerprint recognition technology as a ″human information identification card″ has attracted the attention of many research groups. Herein, dual-mode (upconversion and downconversion) lanthanide-doped luminescent nanoarchitectures were developed using Y 2 O 3 :Er 3+ ,Yb 3+ nanoparticles as a core and layered lanthanide hydroxides nanomaterials as a shell. Under the irradiation of 980 nm near-infrared light, the nanoarchitectures emitted a bright upconverted red light emission. Meanwhile, under the irradiation of 254 nm UV light, the nanoarchitectures can directly emit multicolor luminescence (from green to yellow-green, yellow, orange, and red) by changing the suitable ratios of Tb 3+ / Eu 3+ ions. The information can only be extracted when the irradiation of two kinds of excitation light sources existed at the same time, which can improve the difficulty of illegal imitation and enhance the level of anti-counterfeiting. Furthermore, these luminescent nanoarchitectures were investigated for visual latent fingerprint recognition on various substrates with high definition, high sensitivity, and high antiinterference. These results indicated that the nanoarchitectures reported in this study may have great application prospects in information security and identity recognition.
With the rapid development of the data security technology, increasing attention has been paid to programmable memory materials with desirable security. However, most conventional memory devices only have a single switchable color state. In this research, a kind of pH-responsive Chameleon luminescent sensor (Lap@Eu-OFX, Lap = laponite, OFX = ofloxacin) based on lanthanide doping has been fabricated, which can realize highly contrast, dynamically controlled full-color display by changing the pH value of the solution. The advanced programmable security inks, including the green and red luminescent inks, have been prepared and used to protect confidential information. More interestingly, triethylamine and hydrochloric acid are selected as encryption and decryption reagents, which can repeatedly switch the emission color of important data. Hence, the high-tech security inks show great potential in data coding, multiencryption, and decryption under UV light. Furthermore, the designed dual-channel memory device, Lap@Eu-OFX@CS (CS = Chitosan), enables reversible synchronous switching of sol−gel and emission color when converting from acid to base conditions. This can be dynamically monitored by a subsequent logic gate system and can be converted and stored into binary values. This work provides an effective approach for the design and promising application of information encryptor, smart monitor, and circuit controllers.
Tetracycline (TC) residues are harmful to the environment and human body, so it is necessary to develop a highly sensitive probe for rapid detection of tetracycline residues. In the present paper, a novel dye-doped porous metal–organic framework (UiO-66)-based multi-color fluorescent nano-probe was designed for sensitive ratiometric detection of tetracycline (TC). In this probe, dye-molecules doped UiO-66 was used as a fluorescent internal standard, and the externally grafted lanthanide Eu3+ complex was used as response signals. The fluorescence of the Eu3+ complex was selectively enhanced with increasing concentrations of TC, which was accompanied by a visual blue-to-red color switch. The nano-probe had a linear response between 0.1 and 6 μM with a lowest detection limit of 17.9 nM, which was much lower than the maximum residue limits set by the United States Food and Drug Administration (676 nM) and the European Union (225 nM). The applicability of this method in the analysis of actual samples was evaluated by the determination of TC in honey and milk samples, indicating satisfactory recovery and good reproducibility. In addition, a cost-effective paper-based probe for rapid and visual detection of TC was developed by fixing the nano-probe on filter papers. With the help of a smartphone camera to capture the fluorescence color, and chromaticity analysis software, the calculation and analysis of red (R) and blue (B) values can be realized, which has the potential for real-time visual detection of TC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.