Recognition of road signs is an important part of the control systems of autonomous vehicles and driver assistance systems. Modern recognition methods based on neural networks require large well-labeled datasets. Marking up data is quite expensive, but it is even more difficult to mark up rare classes of objects. To solve this problem in this article, we use synthetic data. We improve the marking of the Russian traffic signs dataset (RTSD) in semi-automatic mode adding 9 thousand new road signs. We perform an experimental evaluation of the currently best classifiers and detectors in the task of recognizing road signs. To improve the performance of classification, we use stochastic weight averaging (SWA) and contrastive loss. The use of modern methods allows us to train a high-quality neural network on synthetic data, which was previously impossible, and significantly improves the metrics of recognition of both rare and frequent road signs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.