m6A RNA methylation regulators can regulate the growth, progression, and invasion of glioma cells by regulating their target genes, which provides a reliable support for the m6A regulator–target axes as the novel therapeutic targets and clinical prognostic signature in glioma. This study aimed to explore the role and prognostic value of m6A RNA methylation regulators and their targets. Expression profiles and clinicopathological data were obtained from the Chinese Glioma Genome Atlas (CGGA), The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), and Clinical Proteome Tumor Analysis Consortium (CPTAC) datasets. Differential expression and correlation analyses were performed between normal and glioma tissues at mRNA and protein levels. Univariate Cox regression, survival, and Lasso Cox regression analyses were conducted to identify and establish the prognostic gene signature. Kaplan–Meier curve, multivariate Cox regression analysis, and ROC were utilized to evaluate the prognostic capacity of the prognostic gene signature. The correlation analysis, systematic bioinformatics analysis, and cell experiment were performed to further understand the potential underlying molecular mechanisms and drug sensitivity. Our results suggested that IGF2BP2, KIAA1429, METTL16, and METTL3, as well as 208 targets are involved in the occurrence of glioma, GBM, and LGG. YTHDF1 and 78 targets involved the occurrence of glioma and GBM, not LGG, among which 181 genes were associated with overall survival. From other findings and our cell experiment results, we demonstrated that METTL3 can activate Notch pathway and facilitate glioma occurrence through regulating its direct targets NOTCH3, DLL3, and HES1, and Notch pathway genes may serve as the potential treatment targets for glioma. Our study established and validated a seven-gene signature comprising METTL3, COL18A1, NASP, PHLPP2, TIMP1, U2AF2, and VEGFA, with a good capability for predicting glioma survival, which may guide therapeutic customization and clinical decision-making. These genes were identified to influence 81 anticancer drug responses, which further contributes to the early phase clinical trials of drug development.
Idiopathic pulmonary fibrosis (IPF) is a progressive disease whose etiology remains unknown. The purpose of this study was to explore hub genes and pathways related to IPF development and prognosis. Multiple gene expression datasets were downloaded from the Gene Expression Omnibus database. Weighted correlation network analysis (WGCNA) was performed and differentially expressed genes (DEGs) identified to investigate Hub modules and genes correlated with IPF. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, and protein-protein interaction (PPI) network analysis were performed on selected key genes. In the PPI network and cytoHubba plugin, 11 hub genes were identified, including ASPN, CDH2, COL1A1, COL1A2, COL3A1, COL14A1, CTSK, MMP1, MMP7, POSTN, and SPP1. Correlation between hub genes was displayed and validated. Expression levels of hub genes were verified using quantitative real-time PCR (qRT-PCR). Dysregulated expression of these genes and their crosstalk might impact the development of IPF through modulating IPF-related biological processes and signaling pathways. Among these genes, expression levels of COL1A1, COL3A1, CTSK, MMP1, MMP7, POSTN, and SPP1 were positively correlated with IPF prognosis. The present study provides further insights into individualized treatment and prognosis for IPF.
To explore the potential mechanism of cancer patients appearing more vulnerable to SARS-CoV-2 infection and poor COVID-19 outcomes, we conducted an integrative bioinformatics analysis for SARS-CoV-2-required genes and host genes and variants related to SARS-CoV-2 susceptibility and COVID-19 severity. BLCA, HNSC, KIRC, KIRP, LGG, PCPG, PRAD, TGCT, and THCA patients carrying rs10774671-A (OAS1) genotype may be more likely to have poor COVID-19 outcomes relative to those who carry rs10774671-G, because individuals carrying rs10774671-A will have lower expression of OAS1, which serves as a protective factor against SARS-CoV-2 processes and poor COVID-19 outcomes. SARS-CoV-2-required genes were correlated with TME, immune infiltration, overall survival, and anti-cancer drug sensitivity. CHOL patients may have a higher risk of SARS-CoV-2 infection than healthy subjects. SARS-CoV-2-induced ACE2 and NPC1 elevation may have a negative influence on the immune responses of LUSC and CD8+T infiltration of LUAD, and negatively affect the sensitivity of anti-lung cancer drugs. LUSC and LUAD patients may have a varying degree of adverse outcomes if they are infected with SARS-CoV-2. miR-760 may target and inhibit ACE2 expression. Cancer patients appearing vulnerable to SARS-CoV-2 infection and having poor COVID-19 outcomes may be partly due to host genetic factors and dysregulation of SARS-CoV-2-required genes. OAS1, ACE2, and miR-760 could serve as the treatment and intervention targets for SARS-CoV-2.
Aging is one of the greatest risk factors for postoperative cognitive dysfunction (POCD), also known as perioperative neurocognitive disorder (PND). Animal models of PND are usually induced in mice over 18 months of age, which imposes expensive economic and time costs for PND-related studies. Sleep disorders, including sleep fragmentation, are reported to aggravate memory impairment in neurocognitive-related diseases such as Alzheimer's disease (AD). Therefore the aim of the present study was to explore whether a PND model could be constructed in younger mice with the help of fragmented sleep. We found that fragmented sleep followed by laparotomy under isoflurane anesthesia could stably induce PND in 15-month-old mice. To determine whether the neurocognitive decline in this model could be salvaged by clinical treatments, we administered repetitive transcranial magnetic stimulation (rTMS) to the model mice before anesthesia and surgery. We found that 10 days of high-frequency rTMS (HF-rTMS) could improve spatial learning and memory deficits in this modified PND model. We are the first to successfully construct a PND model in younger mice,which is more economical, that can be used as an alternative model for future PND studies.
Xiaoxuming decoction (XXMD) has been traditionally used to manage stroke though debates on its clinical efficacy were present in the history. Till nowadays, it is still one of the most commonly used herbal recipes for stroke. One of the reasons is that a decent proportion of ischemic stroke patients still have residue symptoms even after thrombolysis with rt-PA or endovascular thrombectomy. Numerous clinical studies have shown that XXMD is an effective alternative therapy not only at the acute stage, but also at the chronic sequelae stage of ischemic stroke. Modern techniques have isolated groups of compounds from XXMD which have shown therapeutic effects, such as dilating blood vessels, inhibiting thrombosis, suppressing oxidative stress, attenuating nitric oxide induced damage, protecting the blood brain barrier and the neurovascular unit. However, which of the active compounds is responsible for its therapeutic effects is still unknown. Emerging studies have screened and tested these active compounds aiming to find individual compounds that can be used as drugs to treat stroke. The present study summarized both clinical evidence of XXMD in managing stroke and experimental evidence on its molecular mechanisms that have been reported recently using advanced techniques. A new perspective has also been discussed with an aim to provide new targets that can be used for screening active compounds from XXMD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.