Based on the project of Modaoxi Bridge, an experimental study on the compressive behavior of ultrahigh strength concrete filled steel tube (UHSCFST) short column was conducted. A total of 9 UHSCFST specimens were tested, and the cube strength ( cu ) of the core concrete reached 115.4 MPa. Main parameters were the confining factor ( = 0.608, 0.919, and 1.015), steel ratio ( = 14.67%, 20.02%, and 21.98%), and steel strength ( = 349 MPa, 352 MPa, and 427 MPa). The axially loading test results showed that the visible damage of steel tube occurred under the ultimate load. The higher the confining effect, the less the damage features. And all specimens basically presented a drum-type failure mode. The confining effect of steel tube effectively changed the brittle failure mode of ultrahigh strength concrete (UHSC) and tremendously improved the load bearing capacity and ductility of specimens. Moreover, the higher the steel ratio and steel strength of the specimens, the stronger the confining effect. Meanwhile the excellent mechanical properties will be obtained. Also it is recommended that the UHSCFST prefers Q345 or above strength steel tube to ensure sufficient ductility, and the steel ratio should be more than 20%. Furthermore, the confining effect of steel tubes can improve the ultimate bearing capacity of the ultrahigh strength CFST short columns.
Since mountain bridges would be influenced by flood disasters, earthquake damage and other problems, this article puts forward some precautions that might be used during the construction of mountain bridges in Sichuan on the basis of the direct and indirect destruction caused by earthquakes and floods in the construction of Sichuan bridge in the expectation that it can provide some reference for disaster prevention.
Based on the project of the Guansheng Qujiang Bridge, the flexural mechanical properties of an ultrahigh strength concrete filled steel tube(UHSCFST)were discussed. A total of six UHSCFST beam specimens were tested, and the cube strength (𝑓cu) of the core concrete reached 80.3–115.2 MPa. The effects of concrete strength on flexural bearing capacity, deformation characteristics, and failure modes of UHSCFST specimens were discussed. Test results showed that the bending failure modes of UHSCFST specimens were the same as those of ordinary ones. The failure of UHSCFST specimens was attributed to excessive deflection, and local buckling occurred in the compression zone. Moreover, the bending capacity of the specimens did not decrease, even if they had yielded. Although ultrahigh strength concrete was poured, all of the specimens displayed outstanding bending ductility. The main function of core concrete was to provide radial restraint for the steel tube to avoid premature buckling. When the steel content of the specimen section was constant, the strength increases of core concrete had a slight impact on the bending failure mode, bearing capacity and ductility of UHSCFST specimen. The research results can deepen the understanding of the mechanical behaviors of the UHSCFST composite truss structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.