Abstract. Structural health monitoring (SHM) is often approached from a statistical pattern recognition or machine learning perspective with the aim of inferring the health state of a structure using data derived from a network of sensors placed upon it. In this paper, two SHM sensor placement optimisation (SPO) strategies that offer robustness to environmental effects are developed and evaluated. The two strategies both involve constructing an objective function (OF) based upon an established damage classification technique and an optimisation of sensor locations using a genetic algorithm (GA). The key difference between the two strategies explored here is in whether any sources of benign variation are deemed to be observable or not. The relative performances of both strategies are demonstrated using experimental data gathered from a glider wing tested in an environmental chamber, with the structure tested in different health states across a series of controlled temperatures.
Sensor placement optimization (SPO) is usually applied during the structural health monitoring sensor system design process to collect effective data. However, the failure of a sensor may significantly affect the expected performance of the entire system. Therefore, it is necessary to study the optimal sensor placement considering the possibility of sensor failure. In this article, the research focusses on an SPO giving a fail-safe sensor distribution, whose sub-distributions still have good performance. The performance of the fail-safe sensor distribution with multiple sensors placed in the same position will also be studied. The adopted data sets include the mode shapes and corresponding labels of structural states from a series of tests on a glider wing. A genetic algorithm is used to search for sensor deployments, and the partial results are validated by an exhaustive search. Two types of optimization objectives are investigated, one for modal identification and the other for damage identification. The results show that the proposed fail-safe sensor optimization method is beneficial for balancing the system performance before and after sensor failure.
An improved genetic algorithm is employed to optimize the structure of (C 60) N (N ≤ 25) fullerene clusters with the lowest energy. First, crossover with variable precision, realized by introducing the hamming distance, is developed to provide a faster search mechanism. Second, the bit string mutation and feedback mutation are incorporated to maintain the diversity in the population. The interaction between C 60 molecules is described by the Pacheco and Ramalho potential derived from first-principles calculations. We compare the performance of the Improved GA (IGA) with that of the Standard GA (SGA). The numerical and graphical results verify that the proposed approach is faster and more robust than the SGA. The second finite differential of the total energy shows that the (C 60) N clusters with N = 7, 13, 22 are particularly stable. Performance with the lowest energy is achieved in this work.
Abstract. Structural health monitoring (SHM) is often approached from a statistical pattern recognition or machine learning perspective with the aim of inferring the health state of a structure using data derived from a network of sensors placed upon it. In this paper, two SHM sensor placement optimisation (SPO) strategies that offer robustness to environmental effects are developed and evaluated. The two strategies both involve constructing an objective function (OF) based upon an established damage classification technique and an optimisation of sensor locations using a genetic algorithm (GA). The key difference between the two strategies explored here is in whether any sources of benign variation are deemed to be observable or not. The relative performances of both strategies are demonstrated using experimental data gathered from a glider wing tested in an environmental chamber, with the structure tested in different health states across a series of controlled temperatures.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.