Background Understanding the genetic basis of yield related traits contributes to the improvement of grain yield in maize. Results Using 291 excellent maize inbred lines as materials, six yield related traits of maize, including grain yield per plant (GYP), grain length (GL), grain width (GW), kernel number per row (KNR), 100 kernel weight (HKW) and tassel branch number (TBN) were investigated in Jinan, in 2017, 2018 and 2019. The average values of three environments were taken as the phenotypic data of yield related traits, and they were statistically analyzed. Based on 38,683 high-quality SNP markers in the whole genome of the association panel, the MLM with PCA model was used for genome-wide association analysis (GWAS) to obtain 59 significantly associated SNP sites. Moreover, 59 significantly associated SNPs (P < 0.0001) referring to GYP, GL, GW, KNR, HKW and TBN, of which 14 SNPs located in yield related QTLs/QTNs previously reported. A total of 66 candidate genes were identified based on the 59 significantly associated SNPs, of which 58 had functional annotation. Conclusions Using genome-wide association analysis strategy to identify genetic loci related to maize yield, a total of 59 significantly associated SNP were detected. Those results aid in our understanding of the genetic architecture of maize yield and provide useful SNPs for genetic improvement of maize.
Background: Understanding the genetic basis of yield related traits contributes to the improvement of grain yield in maize. Results: Using 291 excellent maize inbred lines as materials, six yield related traits of maize, including grain yield per plant (GYP), grain length (GL), grain width (GW), kernel number per row (KNR), 100 kernel weight (HKW) and tassel branch number (TBN) were investigated in Jinan, in 2017, 2018 and 2019. The average values of six environments were taken as the phenotypic data of yield related traits, and they were statistically analyzed. Based on 38,683 high-quality SNP markers in the whole genome of the association panel, the MLM with PCA model was used for genome-wide association analysis to obtain significantly associated SNP sites, and candidate genes were predicted based on the LD interval sequence of these significant associated SNPs, and the functions of candidate genes were annotated. Conclusions: The phenotypic analysis showed that the six yield related traits exhibited a normal distribution and high level of heritability. Genome-wide association study (GWAS) found 59 significantly associated SNPs (P<0.00001) referring to GYP, KL, KW, KNR, HKW and TBN, of which 14 SNPs located in yield related QTLs/QTNs previously reported. A total of 66 candidate genes were found based on those significantly associated SNPs. These findings provide valuable information for understanding the genetic mechanisms of maize grain yield formation and for improving molecular marker-assisted selection for the high-yield breeding of maize.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.