The reduction of graphene oxide (GO) with a large-scale production has been demonstrated to be one of the key steps for the preparation of graphene-based composite materials with various potential applications. Therefore, it is highly required to develop a facile, green, and environmentally friendly route for the effective reduction of GO. In this study, a new and effective reduced method of GO nanosheets, based on the dye-sensitization-induced visible-light reduction mechanism, was developed to prepare reduced GO (rGO) and graphene-based TiO2 composite in the absence of any additional reducing agents. It was found that the dye-sensitization-induced reduction process of GO was accompanied with the formation of TiO2-rGO composite nanostructure. The photocatalytic experimental results indicated that the resultant TiO2-rGO nanocomposites exhibited significantly higher photocatalytic performance than pure TiO2 because of a rapid separation of photogenerated electrons and holes by the rGO cocatalyst.
Atomic, electronic structure and composition of top-down metal-assisted wet-chemically etched silicon nanowires were studied by synchrotron radiation based X-ray absorption near edge structure technique. Local surrounding of the silicon and oxygen atoms in silicon nanowires array was studied on as-prepared nanostructured surfaces (atop part of nanowires) and their bulk part after, first time applied,
in-situ
mechanical removal atop part of the formed silicon nanowires. Silicon suboxides together with disturbed silicon dioxide were found in the composition of the formed arrays that affects the electronic structure of silicon nanowires. The results obtained by us convincingly testify to the homogeneity of the phase composition of the side walls of silicon nanowires and the electronic structure in the entire length of the nanowire. The controlled formation of the silicon nanowires array may lead to smart engineering of its atomic and electronic structure that influences the exploiting strategy of metal-assisted wet-chemically etched silicon nanowires as universal matrices for different applications.
The engineering of building envelope aims is to achieve building energy efficiency which uses shading device to increase the shaded area. Also, to reduce heat gain by the building from solar radiation, this will reduce the energy load on the building. This paper aim to focuses on the deepening of technology of building envelope elements, and how the building envelope can control the thermal comfort as part of the indoor environment in a building that carries sustainability architecture. In conclusion, finally, reveal that the principles of passive design on building envelope have a great influence on the comfort level in the building. It is not possible to create a design that meets the thermal comfort requirements by emphasizing the design of building envelopes. The goal to be achieved in sustainable design is to minimize the use of the current design that takes much energy (almost14% world energy consumption) to address the issue of energy crisis lately.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.