Generally, the blades of wind turbine installed in cold regions often encounter the situation of icing on their surface in winter, which affects the performance of wind turbine greatly and reduces power generation. Blade icing of wind turbine is a typical alarm related to multivariates, such as environment temperature, humidity, blade rotation and so on. To successfully achieve a supervised classification, it is necessary to extract the correlated features with blade icing. This paper proposes an extraction algorithm using reward extremum which can extract a group of variables correlated to blade icing from many monitoring variables of wind turbine, and they affect each other. This algorithm, using reward function which can measure the reward or value of alarm problem, can effectively distinguish the variables correlated to blade icing from the uncorrelated ones without knowing the mean of variables and the relations between them. Whether the blade of wind turbine is iced or not is a binary logic, so logistic regression algorithm is better choice to detect blade icing. Hence, this paper proposes a hybrid model using logistic regression algorithm and extraction algorithm using reward extremum, which can be built by machine learning with historic monitoring data. This model can real-time detect blade icing by real-time monitoring data. A correlation variable set can be obtained by the application of extraction algorithm using reward extremum on the historic monitoring data; and then the weights of the correlation variables in the set can be gained from the historic data by using logistic regression algorithm, so a blade icing detection pattern can be found using logistic regression algorithm; finally, whether the blade of wind turbine is iced in delay time or not can be real-time detected with the help of the hybrid model by real-time monitoring data. It is proved by wind turbine data that this hybrid model can work well not only to get correlation variable set but also to improve the generalization performance of logistic regression and achieve better prediction results. The performance of the model on blade icing alarm of wind turbine provides a new way to find out multivariate correlation to alarm from the mass historic monitoring data.
The blades of wind turbines located at high latitudes are often covered with ice in late autumn and winter, where this affects their capacity for power generation as well as their safety. Accurately identifying the icing of the blades of wind turbines in remote areas is thus important, and a general model is needed to this end. This paper proposes a universal model based on a Deep Neural Network (DNN) that uses data from the Supervisory Control and Data Acquisition (SCADA) system. Two datasets from SCADA are first preprocessed through undersampling, that is, they are labeled, normalized, and balanced. The features of icing of the blades of a turbine identified in previous studies are then used to extract training data from the training dataset. A middle feature is proposed to show how a given feature is correlated with icing on the blade. Performance indicators for the model, including a reward function, are also designed to assess its predictive accuracy. Finally, the most suitable model is used to predict the testing data, and values of the reward function and the predictive accuracy of the model are calculated. The proposed method can be used to relate continuously transferred features with a binary status of icing of the blades of the turbine by using variables of the middle feature. The results here show that an integrated indicator system is superior to a single indicator of accuracy when evaluating the prediction model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.