For the temperature field reconstruction (TFR), a complex image-to-image regression problem, the convolutional neural network (CNN) is a powerful surrogate model due to the convolutional layer's good image feature extraction ability. However, a lot of labeled data is needed to train CNN, and the common CNN can not quantify the aleatoric uncertainty caused by data noise. In actual engineering, the noiseless and labeled training data is hardly obtained for the TFR. To solve these two problems, this paper proposes a deep Monte Carlo quantile regression (Deep MC-QR) method for reconstructing the temperature field and quantifying aleatoric uncertainty caused by data noise. On the one hand, the Deep MC-QR method uses physical knowledge to guide the training of CNN. Thereby, the Deep MC-QR method can reconstruct an accurate TFR surrogate model without any labeled training data. On the other hand, the Deep MC-QR method constructs a quantile level image for each input in each training epoch. Then, the trained CNN model can quantify aleatoric uncertainty by quantile level image sampling during the prediction stage. Finally, the effectiveness of the proposed Deep MC-QR method is validated by many experiments, and the influence of data noise on TFR is analyzed.
Physical adversarial attacks in object detection have attracted increasing attention. However, most previous works focus on hiding the objects from the detector by generating an individual adversarial patch, which only covers the planar part of the vehicle's surface and fails to attack the detector in physical scenarios for multi-view, long-distance and partially occluded objects. To bridge the gap between digital attacks and physical attacks, we exploit the full 3D vehicle surface to propose a robust Full-coverage Camouflage Attack (FCA) to fool detectors. Specifically, we first try rendering the non-planar camouflage texture over the full vehicle surface. To mimic the real-world environment conditions, we then introduce a transformation function to transfer the rendered camouflaged vehicle into a photo-realistic scenario. Finally, we design an efficient loss function to optimize the camouflage texture. Experiments show that the full-coverage camouflage attack can not only outperform state-of-the-art methods under various test cases but also generalize to different environments, vehicles, and object detectors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.