Chiral vicinal diamines, a unique class of optically-active building blocks, play a crucial role in material design, pharmaceutical, and catalysis. Traditionally, their syntheses are all solvent-based approaches, which make organic solvent an indispensable part of their production. As part of our program aiming to develop chemical processes with reduced carbon footprints, we recently reported a highly practical and environmentally-friendly synthetic route to chiral vicinal diamines by solvent-free mechanochemical diaza-Cope rearrangement. We herein showed that a new protocol by co-milling with common laboratory solid additives, such as silica gel, can significantly enhance the efficiency of the reaction, compared to reactions in the absence of additives. One possible explanation is the Lewis acidic nature of additives that accelerates a key Schiff base formation step. Reaction monitoring experiments tracing all the reaction species, including reactants, intermediates, and product, suggested that the reaction profile is distinctly different from ball-milling reactions without additives. Collectively, this work demonstrated that additive effect is a powerful tool to manipulate a reaction pathway in mechanochemical diazo-Cope rearrangement pathway, and this is expected to find broad interest in organic synthesis using mechanical force as an energy input.
Recently, polymer mechanochemistry has attracted much scientific interest due to its potential to develop degradable polymers. When the two ends of a polymer chain experience a linear pulling stress, molecular strain builds up, at sufficiently strong force, a bond scission of the weakest covalent bond results. In contrast, bond‐breaking events triggered by conformational stress are much less explored. Here, we discovered that a Zn salen complex would undergo conformational switching upon allosteric complexation with alkanediammonium guests. By controlling the guest chain length, the torsional strain experienced by Zn complex can be modulated to induce bond cleavage with chemical stimulus, and reactivity trend is predicted by conformational analysis derived by DFT calculation. Such strain‐release reactivity by a Zn(salen) complex initiated by guest binding is reminiscent of conformation‐induced reactivity of enzymes to enable chemical events that are otherwise inhibited.
Recently, polymer mechanochemistry has attracted much scientific interest due to its potential to develop degradable polymers. When the two ends of a polymer chain experience a linear pulling stress, molecular strain builds up, at sufficiently strong force, a bond scission of the weakest covalent bond results. In contrast, bond-breaking events triggered by conformational stress are much less explored. Here, we discovered that a Zn salen complex would undergo conformational switching upon allosteric complexation with alkanediammonium guests. By controlling the guest chain length, the torsional strain experienced by Zn complex can be modulated to induce bond cleavage with chemical stimulus, and reactivity trend is predicted by conformational analysis derived by DFT calculation. Such strain-release reactivity by a Zn(salen) complex initiated by guest binding is reminiscent of conformation-induced reactivity of enzymes to enable chemical events that are otherwise inhibited.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.