Background: Multimodal postoperative pain regimens are widely used following total knee arthroplasty (TKA). However, there are few studies on the rehabilitation of the co-application of local infiltration analgesia (LIA) and femoral nerve block (FNB) combined with dexmedetomidine (DEX) for patients undergoing TKA. This study aimed to investigate the effect of LIA plus FNB and co-application of perioperative DEX on TKA outcomes. Methods: 95 patients were randomized into two groups. Patients in group B (n = 48) received a single preoperative FNB and LIA. Patients in group A (n = 47) received FNB and LIA, as well as continuous intravenous injection of DEX starting from the induction of anesthesia to postoperative day 2. All patients were allowed patient-controlled analgesia postoperatively. Visual analog scale (VAS) scores, knee range of motion (ROM) degrees, narcotic consumption, length of hospital stay (LOS), complications, Hospital for Special Surgery (HSS) scores and Montreal Cognitive Assessment-Basic (MoCA-B) Scores were recorded. Results: In group A, the mean VAS scores at rest and during movement were lower, the amount of rescue analgesia was decreased, first time of ambulation was reduced, ROM was improved, MoCA-B Scores were increased, LOS was shorter, HSS scores were higher postoperatively compared with group B (all p < 0.05). Conclusion: Our study indicated multimodal analgesia involving a single FNB and LIA combined with DEX accelerates rehabilitation for patients undergoing TKA.
Myocardial ischemia/reperfusion injury (MI/RI) is a serious pathophysiological process relating to cardiovascular disease. Oroxin A (OA) is a natural flavonoid glycoside with various biological activities. However, its effect on the pathophysiological process of MI/RI has not yet been reported. The aim of this study was to determine whether OA could alleviate MI/RI induced inflammation and pyroptosis in vivo and in vitro, providing a novel therapeutic regimen for the treatment of MI/RI. A high-throughput drug screening strategy was employed to test 2,661 natural compound libraries that can alleviate MI/RI in vivo and in vitro. The rat model of MI/RI was established by ligating the left anterior descending (LAD) coronary artery. H9c2 cells were subjected to oxygen-glucose deprivation/reperfusion (OGD/R) to simulate MI/RI. The results show that OA is able to significantly inhibit apoptosis, pyroptosis and the inflammation response (TNF-α, IL-6, IL-8, IL-10, IL-1β, IL-18) in vivo and in vitro, and reduce the release of myocardial enzymes (cTnI, cTnT, CK-MB, LDH, AST). In the rat MI/RI model, OA can not only improve cardiac function and reduce inflammatory cell infiltration but also reduce myocardial infarct size. The results revealed that OA is an effective remedy against MI/RI as it reduces the inflammatory response and inhibits pyroptosis. This may provide a new therapeutic target for the clinical treatment of MI/RI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.