In this paper, we consider linear stability issues for one-dimensional hyperbolic conservation laws using a class of conservative high order upwind-biased finite difference schemes, which is a prototype for the weighted essentially non-oscillatory (WENO) schemes, for initial-boundary value problems (IBVP). The inflow boundary is treated by the so-called inverse Lax-Wendroff (ILW) or simplified inverse Lax-Wendroff (SILW) procedure, and the outflow boundary is treated by the classical high order extrapolation. A third order total variation diminishing (TVD) Runge-Kutta time discretization is used in the fully discrete case. Both GKS (Gustafsson, Kreiss and Sundström) and eigenvalue analysis are performed for both semi-discrete and fully discrete schemes. The two different analysis techniques yield consistent results. Numerical tests are performed to demonstrate the stability results predicted by the analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.