A bilayered chiral metamaterial is proposed and demonstrated to exhibit dual-band asymmetric transmission of linearly polarized electromagnetic waves in two opposite directions. Simulated and measured results show that the bilayered chiral metamaterial can achieve cross-polarization conversion with an efficiency of over 90% for both y- and x-polarized waves. The proposed metasurface can be regarded as an ultrathin polarization-controlled switch that is easily switched on/off by changing a linearly polarized wave to its orthogonal component.
Polarization manipulations of electromagnetic waves can be obtained by chiral and anisotropic metamaterials routinely, but the dynamic and high-efficiency modulations of chiral properties still remain challenging at the terahertz range. Here, we theoretically demonstrate a new scheme for realizing thermal-controlled chirality using a hybrid terahertz metamaterial with embedded vanadium dioxide (VO2) films. The phase transition of VO2 films in 90° twisted E-shaped resonators enables high-efficiency thermal modulation of linear polarization conversion. The asymmetric transmission of linearly polarized wave and circular dichroism simultaneously exhibit a pronounced switching effect dictated by temperature-controlled conductivity of VO2 inclusions. The proposed hybrid metamaterial design opens exciting possibilities to achieve dynamic modulation of terahertz waves and further develop tunable terahertz polarization devices.
We demonstrate a multiband background-free terahertz (THz) switch in photoactive chiral metamaterial using polarization conversion. Orthogonal arrangement of two asymmetrical split-ring apertures allows a high polarization conversion efficiency and low copolarization transmission. The chiral metamaterial embedded with photoactive silicon promises a dynamic control on cross-polarization transmission and thus enables an efficient background-free THz switch. The on/off state of THz metamaterial switching can be efficiently controlled by an optical pump. The realization of a cross-polarization THz switch provides a new mechanism of mode switching to control THz wave propagation and will be a promising candidate for polarization devices.
We design and demonstrate a thermally switchable terahertz metamaterial absorber consisting of an array of orthogonal coupled split-ring metal resonators involving a VO2 phase transition. Numerical results indicate that the active metamaterial always absorbs the TE wave in dual-band regardless of insulating and metallic VO2, while the insulator-to-metal phase transition enables a switchable effect between dual-band and broadband absorption of the TM wave with the resonant frequency tunability of 33%. Especially under the metallic VO2 state, the absorption properties are polarization-dependent and exhibit a switching effect between dual-band and broadband absorption with the increase of the polarization angle. The tunable absorption mechanism can be explained by effective impedance theory and electric energy density distributions. The proposed dual-band to broadband metamaterial switching absorber may have broad applications in sensors, imaging and emitters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.