The limited penetration depth of photothermal agents (PTAs) active in the NIR-I biowindow and the thermoresistance caused by heat shock protein (HSP) significantly limit the therapeutic efficiency of photothermal therapy (PTT). To address the problem, we introduce a strategy of low-temperature nucleus-targeted PTT in the NIR-II region achieving effective tumor killing by combining the vanadium carbide quantum dots (V2C QDs) PTA and an engineered exosomes (Ex) vector. The small fluorescent V2C QDs with good photothermal effect in the NIR-II region were modified with TAT peptides and packaged into Ex with RGD modification (V2C-TAT@Ex-RGD). The resulting nanoparticles (NPs) exhibited good biocompatibility, long circulation time, and endosomal escape ability, and they could target the cell and enter into the nucleus to realize low-temperature PTT with advanced tumor destruction efficiency. The fluorescent imaging, photoacoustic imaging (PAI), and magnetic resonance imaging (MRI) capability of the NPs were also revealed. The low-temperature nucleus-targeted PTT in the NIR-II region provides more possibilities toward successful clinical application of PTT.
Ultralight and highly flexible biopolymer aerogels, composed of biomimetic cellular microstructures formed from cellulose nanofibers and silver nanowires, are assembled via a convenient and facile freeze-casting method. The lamellar, honeycomb-like, and random porous scaffolds are successfully achieved by adjusting freezing approaches to modulate the relationships between microstructures and macroscopic mechanical and electromagnetic interference (EMI) shielding performances. Combining the shielding transformation arising from in situ compression and the controlled content of building units, the optimized lamellar porous biopolymer aerogels can show a very high EMI shielding effectiveness (SE), which exceeds 70 or 40 dB in the Xband while the density is merely 6.2 or 1.7 mg/cm 3 , respectively. The corresponding normalized surface specific SE (defined as the SE divided by the material density and thickness) is up to 178235 dB•cm 2 /g, far surpassing that of the so-far reported shielding materials. Antibacterial properties and hydrophobicity are also demonstrated extending the versatility and application potential of the biopolymer hybrid aerogels.
It is inherently challenging to recapitulate the precise hierarchical architectures found throughout nature (such as in wood, antler, bone, and silk) using synthetic bottom‐up fabrication strategies. However, as a renewable and naturally sourced nanoscale building block, nanocellulose—both cellulose nanocrystals and cellulose nanofibrils—has gained significant research interest within this area. Altogether, the intrinsic shape anisotropy, surface charge/chemistry, and mechanical/rheological properties are some of the critical material properties leading to advanced structure‐based functionality within nanocellulose‐based bottom‐up fabricated materials. Herein, the organization of nanocellulose into biomimetic‐aligned, porous, and fibrous materials through a variety of fabrication techniques is presented. Moreover, sophisticated material structuring arising from both the alignment of nanocellulose and via specific process‐induced methods is covered. In particular, design rules based on the underlying fundamental properties of nanocellulose are established and discussed as related to their influence on material assembly and resulting structure/function. Finally, key advancements and critical challenges within the field are highlighted, paving the way for the fabrication of truly advanced materials from nanocellulose.
Sonodynamic therapy (SDT) has attracted much attention since it can break the depth-penetration barrier of phototriggered therapeutic strategies. However, developing sonosensitizers with a high reactive oxygen species (ROS) quantum yield for precision and enhanced SDT remains a major challenge. In this study, Au nanocrystals were selectively grew on the edge of the TiO2 nanosheets (NSs) with highly exposed (001) facets to fabricate Au-TiO2 NSs as sonosensitizers for enhanced SDT. The high sonosensitization efficiency was closely linked to the effective prevention of the fast recombination of excited electrons and holes. Under ultrasound (US) irradiation, the ROS generation efficiency of the resulting Au-TiO2 NSs was higher compared to pure TiO2 NSs and superior to previous TiO2 nanocomposite. The Au-TiO2 was further modified with mitochondria-targeted triphenylphosphine (TPP) and AS1411 aptamer (Au-TiO2-A-TPP) to realize organelle-targeted enhanced SDT and CT (computed tomography) imaging. The tumor growth inhibition was completely realized via Au-TiO2-A-TPP-mediated SDT both in vitro and in vivo due to the adequate ROS generation in the mitochondria organelle. This knowledge is vital to design an inorganic sonosensitizer with structure-dependent and mitochondria-target related SDT enhancement.
Sonodynamic therapy (SDT) exhibits high tissue penetration and negligible radiation damage to normal tissues, and thus emerges as a promising cancer therapeutic modality for glioblastoma (GBM). However, the blood−brain barrier (BBB) and hypoxic microenvironment greatly limit the SDT efficiency. In this work, a biodegradable nanoplatform (termed as CSI) is fabricated by encapsulating catalase (CAT) into silica nanoparticles (CAT@SiO2) for tumor hypoxia relief, and then loaded with the sonosensitizer indocyanine green (ICG). Inspired by the ability of macrophages to cross the BBB, CSI is further coated with AS1411 aptamer‐modified macrophage exosomes to form CSI@Ex‐A, which possesses efficient BBB penetration and good cancer‐cell‐targeting capability. After tumor cell endocytosis, highly expressed glutathione (GSH) triggeres biodegradation of the nanoplatform and the released CAT catalyzes hydrogen peroxide (H2O2) to produce O2 to relieve tumor hypoxia. The GSH depletion and O2 self‐supplying effectively enhances the SDT efficiency both in vitro and in vivo. In addition, the resulting CSI@Ex‐A exhibits good biocompatibility and long circulation time. These findings demonstrate that CSI@Ex‐A may serve as a competent nanoplatform for GBM therapy, with potential for clinical translation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.