In its dormant state, the membrane cytoskeletal linker protein ezrin takes on a NH2 terminal-to-COOH terminal (N-C) binding conformation. In vitro evidence suggests that eliminating the N-C binding conformation by Thr567 phosphorylation leads to ezrin activation. Here, we found for resting gastric parietal cells that the levels of ezrin phosphorylation on Thr567 are low and can be increased to a small extent (∼40%) by stimulating secretion via the cAMP pathway. Treatment of cells with protein phosphatase inhibitors led to a rapid, dramatic increase in Thr567 phosphorylation by 400% over resting levels, prompting the hypothesis that ezrin activity is regulated by turnover of phosphorylation on Thr567. In vitro and in vivo fluorescence resonance energy transfer analysis demonstrated that Thr567 phosphorylation opens the N-C interaction. However, even in the closed conformation, ezrin localizes to membranes by an exposed NH2 terminal binding site. Importantly, the opened phosphorylated form of ezrin more readily cosediments with F-actin and binds more tightly to membrane than the closed forms. Furthermore, fluorescence recovery after photobleaching analysis in live cells showed that the Thr567Asp mutant had longer recovery times than the wild type or the Thr567Ala mutant, indicating the Thr567-phosphorylated form of ezrin is tightly associated with F-actin and the membrane, restricting normal activity. These data demonstrate and emphasize the functional importance of reversible phosphorylation of ezrin on F-actin binding. A novel model is proposed whereby ezrin and closely associated kinase and phosphatase proteins represent a motor complex to maintain a dynamic relationship between the varying membrane surface area and filamentous actin length.
Simultaneous measurements of single-molecule positions and orientations provide critical insight into a variety of biological and chemical processes. Various engineered point spread functions (PSFs) have been introduced for measuring the orientation and rotational diffusion of dipole-like emitters, but the widely used Cramér-Rao bound (CRB) only evaluates performance for one specific orientation at a time. Here, we report a performance metric, termed variance upper bound (VUB), that yields a global maximum CRB for all possible molecular orientations, thereby enabling the measurement performance of any PSF to be computed efficiently ( ∼ 1000 × faster than calculating average CRB). Our VUB reveals that the simple polarized standard PSF provides robust and precise orientation measurements if emitters are near a refractive index interface. Using this PSF, we measure the orientations and positions of Nile red (NR) molecules transiently bound to amyloid aggregates. Our super-resolved images reveal the main binding mode of NR on amyloid fiber surfaces, as well as structural heterogeneities along amyloid fibrillar networks, that cannot be resolved by single-molecule localization alone.
Paclitaxel and sirolimus are the two major drugs for the treatment of coronary arterial disease in current drug eluting stents. The two drugs can effectively inhibit the in-stent restenosis through their independent pathways and show synergistic effect in preventing tumor tissue growth. We hypothesize that the combination of the two drugs in a drug eluting stent (DES) can also effectively suppress the neointima growth in the stented artery. The present work was focused on the investigation of paclitaxel/sirolimus combination release profiles from a novel biodegradable polymer (poly (D, L-lactide -co-glycolide) / amorphous calcium phosphate, PLGA/ACP) coated stent both in vitro and in vivo. For the in vitro, the drug releasing profiles were characterized by measuring the drug concentration in a drug release medium (Dulbecco’s phosphate buffered saline, DPBS, pH 7.4) at predetermined time points. For the in vivo, a rat aorta stenting model was employed. The results showed that both paclitaxel and sirolimus had a two-phase release profile both in vitro and in vivo, which is similar to the drug release profile of their individual coated DESs, and there is no evident of interference between two drugs. The data suggest that paclitaxel and sirolimus can be combined pharmacokinetically in a DES for the treatment of coronary arterial diseases.
Interactions between biomolecules are characterized by where they occur and how they are organized, e.g., the alignment of lipid molecules to form a membrane. However, spatial and angular information are mixed within the image of a fluorescent molecule–the microscope’s dipole-spread function (DSF). We demonstrate the pixOL algorithm to simultaneously optimize all pixels within a phase mask to produce an engineered Green’s tensor–the dipole extension of point-spread function engineering. The pixOL DSF achieves optimal precision to simultaneously measure the 3D orientation and 3D location of a single molecule, i.e., 4.1° orientation, 0.44 sr wobble angle, 23.2 nm lateral localization, and 19.5 nm axial localization precisions in simulations over a 700 nm depth range using 2500 detected photons. The pixOL microscope accurately and precisely resolves the 3D positions and 3D orientations of Nile red within a spherical supported lipid bilayer, resolving both membrane defects and differences in cholesterol concentration in six dimensions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.