In this paper, we study the periodic boundary value problems for the coupled systems of fractional implicit differential equations. Basing on the coincidence degree theory, we establish the existence and uniqueness theorems. Further, we provide several examples to show our main results.
This paper focuses on the existence of solutions for a higher-order coupled system of fractional differential equations with Sturm-Liouville boundary value conditions at resonance. By applying Mawhin continuation theorem, some new existence results are established. Furthermore, two examples are supplied to demonstrate the main results.
MSC: 34A08; 34B15
This paper is concerned with the solvability for fractional Sturm-Liouville boundary value problems with p(t)-Laplacian operator at resonance using Mawhin's continuation theorem. Sufficient conditions for the existence of solutions have been acquired, and they would extend the existing results. Furthermore, an example is provided to illustrate the main result.
MSC: 34A08; 34B15
The paper is concerned with the solvability for several nonlinear boundary value problems of fractional p‐Laplacian differential equation involving the right‐handed Riemann‐Liouville derivative. By applying monotone iterative technique, lower and upper solutions method and the Banach fixed point theorem, sufficient conditions for existence and uniqueness of extremal solutions are obtained and they extend existing results. At last, two examples are provided to illustrate the results.
<abstract><p>New stochastic and deterministic Hepatitis B epidemic models with general incidence are established to study the dynamics of Hepatitis B virus (HBV) epidemic transmission. Optimal control strategies are developed to control the spread of HBV in the population. In this regard, we first calculate the basic reproduction number and the equilibrium points of the deterministic Hepatitis B model. And then the local asymptotic stability at the equilibrium point is studied. Secondly, the basic reproduction number of the stochastic Hepatitis B model is calculated. Appropriate Lyapunov functions are constructed, and the unique global positive solution of the stochastic model is verified by Itô formula. By applying a series of stochastic inequalities and strong number theorems, the moment exponential stability, the extinction and persistence of HBV at the equilibrium point are obtained. Finally, using the optimal control theory, the optimal control strategy to eliminate the spread of HBV is developed. To reduce Hepatitis B infection rates and to promote vaccination rates, three control variables are used, for instance, isolation of patients, treatment of patients, and vaccine inoculation. For the purpose of verifying the rationality of our main theoretical conclusions, the Runge-Kutta method is applied to numerical simulation.</p></abstract>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.