Photoelectrocatalytic water splitting offers a promising approach to convert sunlight into sustainable hydrogen energy. A thorough understanding of the relationships between the properties and functions of photoelectrocatalytic materials plays a crucial role in the design and fabrication of efficient photoelectrochemical systems for water splitting. This review presents the advances in the development of efficient photoelectrocatalytic materials. First, the fundamentals involved in the photoelectrocatalytic water splitting are elaborated. Then, the critical properties of photoelectrocatalytic materials are classified and discussed according to the associated photoelectrochemical processes, including light absorption, charge separation, charge transportation, and photoelectrocatalytic reactions. The importance of heterointerfaces in photoelectrodes is also mentioned in conjunction with the illustration of some functional interlayer materials. Finally, some strategies that can be employed in material screening and optimization for the construction of highly efficient photoelectrochemical devices for water splitting are also discussed.
Fundamentals of water electrolysis, and recent research progress and trends in the development of earth-abundant first-row transition-metal (Mn, Fe, Co, Ni, Cu)-based oxygen evolution reaction (OER) and hydrogen evolution (HER) electrocatalysts working in acidic, alkaline, or neutral conditions are reviewed. The HER catalysts include mainly metal chalcogenides, metal phosphides, metal nitrides, and metal carbides. As for the OER catalysts, the basic principles of the OER catalysts in alkaline, acidic, and neutral media are introduced, followed by the review and discussion of the Ni, Co, Fe, Mn, and perovskite-type OER catalysts developed so far. The different design principles of the OER catalysts in photoelectrocatalysis and photocatalysis systems are also presented. Finally, the future research directions of electrocatalysts for water splitting, and coupling of photovoltaic (PV) panel with a water electrolyzer, so called PV-E, are given as perspectives.
The photoanodes with heterojunction behavior could enable the development of solar energy conversion, but their performance largely suffers from the poor charge separation and transport process through the multiple interfacial energy levels involved. The question is how to efficiently manipulate these energy levels. Taking the n-Si Schottky photoanode as a prototype, the undesired donor-like interfacial defects and its adverse effects on charge transfer in n-Si/ITO photoanode are well recognized and diminished through the treatment on electronic energy level. The obtained n-Si/TiO/ITO Schottky junction exhibits a highly efficient charge transport and a barrier height of 0.95 eV, which is close to the theoretical optimum for n-Si/ITO Schottky contact. Then, the holes extraction can be further facilitated through the variation of surface energy level, with the NiOOH coated ITO layer. This is confirmed by a 115% increase in surface photovoltage of the photoanodes. Eventually, an unprecedentedly low onset potential of 0.9 V (vs RHE) is realized for water oxidation among n-Si photoanodes. For the water oxidation reaction, the n-Si/TiO/ITO/NiOOH photoanode presents a charge separation efficiency up to 100% and an injection efficiency greater than 90% at a wide voltage range. This work identifies the important role of interfacial energetics played in photoelectrochemical conversion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.